Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meconium aspiration syndrome: a comprehensive review

Abstract

Meconium aspiration syndrome (MAS) is a complex respiratory disease that continues to be associated with significant morbidities and mortality. The pathophysiological mechanisms of MAS include airway obstruction, local and systemic inflammation, surfactant inactivation and persistent pulmonary hypertension of the newborn (PPHN). Supplemental oxygen and non-invasive respiratory support are the main therapies for many patients. The management of the patients requiring invasive mechanical ventilation could be challenging because of the combination of atelectasis and air trapping. While studies have explored various ventilatory modalities, evidence to date does not clearly support any singular modality as superior. Patient’s pathophysiology, symptom severity, and clinician/unit expertise should guide the respiratory management. Early identification and concomitant management of PPHN is critically important as it contributes significantly to mortality and morbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Sharing of data is not applicable, as this is a review article and new data were created or analyzed.

References

  1. Haakonsen Lindenskov PH, Castellheim A, Saugstad OD, Mollnes TE. Meconium aspiration syndrome: possible pathophysiological mechanisms and future potential therapies. Neonatology. 2015;107:225–30.

    CAS  PubMed  Google Scholar 

  2. Rahman S, Unsworthx J, Vause S. Meconium in labour. Obstet Gynaecol Reprod Med. 2013;23:247–52.

    Google Scholar 

  3. Katz VL, Bowes WA. Meconium aspiration syndrome: reflections on a murky subject. Am J Obstet Gynecol. 1992;166:171–83.

    CAS  PubMed  Google Scholar 

  4. Liu WF, Harrington T. Delivery room risk factors for meconium aspiration syndrome. Am J Perinatol. 2002;19:367–78.

    PubMed  Google Scholar 

  5. Ward C, Caughey AB. The risk of meconium aspiration syndrome (MAS) increases with gestational age at term. J Matern Fetal Neonatal Med. 2022;35:155–60.

  6. Oliveira CPL, Flôr-de-Lima F, Rocha GMD, Machado AP, Guimarães Pereira Areias MHF. Meconium aspiration syndrome: risk factors and predictors of severity. J Matern Fetal Neonatal Med. 2019;32:1492–8.

    PubMed  Google Scholar 

  7. Reed RL, Chang C, Perlman JM. Perinatal characteristics and delivery room management of infants born through MSAF. Resuscitation. 2020;157:99–105.

    PubMed  Google Scholar 

  8. Sriram S, Wall SN, Khoshnood B, Singh JK, Hsieh HL, Lee KS. Racial disparity in meconium-stained amniotic fluid and meconium aspiration syndrome in the United States, 1989–2000. Obstet Gynecol. 2003;102:1262–8.

    PubMed  Google Scholar 

  9. Balchin I, Whittaker JC, Lamont RF, Steer PJ. Maternal and fetal characteristics associated with meconium-stained amniotic fluid. Obstet Gynecol. 2011;117:828–35.

    PubMed  Google Scholar 

  10. Janssen PA, Lee SK, Ryan EM, Etches DJ, Farquharson DF, Peacock D, et al. Outcomes of planned home births versus planned hospital births after regulation of midwifery in British Columbia. CMAJ. 2002;166:315–23.

    PubMed  PubMed Central  Google Scholar 

  11. Dargaville PA, Copnell B. Network AaNZN. The epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics. 2006;117:1712–21.

    PubMed  Google Scholar 

  12. Dargaville PA, Copnell B. Australian, New Zealand Neonatal N. The epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics. 2006;117:1712–21.

    PubMed  Google Scholar 

  13. Fischer C, Rybakowski C, Ferdynus C, Sagot P, Gouyon JB. A population-based study of meconium aspiration syndrome in neonates born between 37 and 43 weeks of gestation. Int J Pediatr. 2012;2012:321545.

    CAS  PubMed  Google Scholar 

  14. Amitai Komem D, Meyer R, Yinon Y, Levin G. Prediction of meconium aspiration syndrome by data available before delivery. Int J Gynaecol Obstet. 2022;158:551–6.

    PubMed  Google Scholar 

  15. Davey AM, Becker JD, Davis JM. Meconium aspiration syndrome: physiological and inflammatory changes in a newborn piglet model. Pediatr Pulmonol. 1993;16:101–8.

    CAS  PubMed  Google Scholar 

  16. Zagariya A, Bhat R, Uhal B, Navale S, Freidine M, Vidyasagar D. Cell death and lung cell histology in meconium aspirated newborn rabbit lung. Eur J Pediatr. 2000;159:819–26.

    CAS  PubMed  Google Scholar 

  17. Yeh TF, Lilien LD, Barathi A, Pildes RS. Lung volume, dynamic lung compliance, and blood gases during the first 3 days of postnatal life in infants with meconium aspiration syndrome. Crit Care Med. 1982;10:588–92.

    CAS  PubMed  Google Scholar 

  18. Tyler DC, Murphy J, Cheney FW. Mechanical and chemical damage to lung tissue caused by meconium aspiration. Pediatrics. 1978;62:454–9.

    CAS  PubMed  Google Scholar 

  19. Bae CW, Takahashi A, Chida S, Sasaki M. Morphology and function of pulmonary surfactant inhibited by meconium. Pediatr Res. 1998;44:187–91.

    CAS  PubMed  Google Scholar 

  20. Sun B, Curstedt T, Robertson B. Surfactant inhibition in experimental meconium aspiration. Acta Paediatr. 1993;82:182–9.

    CAS  PubMed  Google Scholar 

  21. Hofer N, Jank K, Strenger V, Pansy J, Resch B. Inflammatory indices in meconium aspiration syndrome. Pediatr Pulmonol. 2016;51:601–6.

    PubMed  Google Scholar 

  22. Mollnes TE, Castellheim A, Lindenskov PH, Salvesen B, Saugstad OD. The role of complement in meconium aspiration syndrome. J Perinatol. 2008;28:S116–9.

    CAS  PubMed  Google Scholar 

  23. Ivanov VA, Gewolb IH, Uhal BD. A new look at the pathogenesis of the meconium aspiration syndrome: a role for fetal pancreatic proteolytic enzymes in epithelial cell detachment. Pediatr Res. 2010;68:221–4.

    CAS  PubMed  Google Scholar 

  24. Ruoss JL, Rios DR, Levy PT. Updates on management for acute and chronic phenotypes of neonatal pulmonary hypertension. Clin Perinatol. 2020;47:593–615.

    PubMed  Google Scholar 

  25. Mathew B, Lakshminrusimha S. Persistent pulmonary hypertension in the newborn. Child (Basel). 2017;4:595–618.

    Google Scholar 

  26. Jain A, McNamara PJ. Persistent pulmonary hypertension of the newborn: advances in diagnosis and treatment. Semin Fetal Neonatal Med. 2015;20:262–71.

    PubMed  Google Scholar 

  27. Monfredini C, Cavallin F, Villani PE, Paterlini G, Allais B, Trevisanuto D. Meconium aspiration syndrome: a narrative review. Child (Basel). 2021;8:230.

    PubMed Central  Google Scholar 

  28. Olicker AL, Raffay TM, Ryan RM. Neonatal respiratory distress secondary to meconium aspiration syndrome. Child (Basel). 2021;8:246.

    Google Scholar 

  29. Yeh T. Meconium aspiration syndrome: the core concept of pathophysiology during resuscitation. Neonatal Med. 2017;24:53–61.

    Google Scholar 

  30. Hofer N, Jank K, Resch E, Urlesberger B, Reiterer F, Resch B. Meconium aspiration syndrome–a 21-years' experience from a tertiary care center and analysis of risk factors for predicting disease severity. Klin Padiatr. 2013;225:383–8.

    CAS  PubMed  Google Scholar 

  31. Dargaville PA. Respiratory support in meconium aspiration syndrome: a practical guide. Int J Pediatr. 2012;2012:965159.

    PubMed  PubMed Central  Google Scholar 

  32. Vain NE, Szyld EG, Prudent LM, Wiswell TE, Aguilar AM, Vivas NI. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. Lancet. 2004;364:597–602.

    PubMed  Google Scholar 

  33. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015;132:2037–99.

    PubMed  Google Scholar 

  34. Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107:161–6.

    CAS  PubMed  Google Scholar 

  35. Carson BS, Losey RW, Bowes WA, Simmons MA. Combined obstetric and pediatric approach to prevent meconium aspiration syndrome. Am J Obstet Gynecol. 1976;126:712–5.

    CAS  PubMed  Google Scholar 

  36. Association AH. Pediatrics AAo. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: neonatal resuscitation guidelines. Pediatrics. 2006;117:e1029–38.

    Google Scholar 

  37. Gandhi CK. Management of meconium-stained newborns in the delivery room. Neonatal Netw. 2018;37:141–8.

    PubMed  Google Scholar 

  38. Fraser WD, Hofmeyr J, Lede R, Faron G, Alexander S, Goffinet F, et al. Amnioinfusion for the prevention of the meconium aspiration syndrome. N. Engl J Med. 2005;353:909–17.

    CAS  PubMed  Google Scholar 

  39. Hofmeyr, G. Justus, Hairong Xu, and Ahizechukwu C. Eke. Amnioinfusion for meconium-stained liquor in labour. Cochrane Database Syst Rev. 2010:CD000014.

  40. Practice, ACOG Committee Obstetric. “ACOG Committee Opinion Number 346, October 2006: amnioninfusion does not prevent meconium aspiration syndrome.” Obstetrics and gynecology 2006;108:1053.

  41. Linder N, Aranda JV, Tsur M, Matoth I, Yatsiv I, Mandelberg H, et al. Need for endotracheal intubation and suction in meconium-stained neonates. J Pediatr. 1988;112:613–5.

    CAS  PubMed  Google Scholar 

  42. Wiswell TE, Gannon CM, Jacob J, Goldsmith L, Szyld E, Weiss K, et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics. 2000;105:1–7.

    CAS  PubMed  Google Scholar 

  43. Kattwinkel, J. Neonatal Resuscitation Textbook. American Academy of Pediatrics, 2000.

  44. Chettri S, Adhisivam B, Bhat BV. Endotracheal suction for nonvigorous neonates born through meconium stained amniotic fluid: a randomized controlled trial. J Pediatr. 2015;166:1208–13.e1.

    PubMed  Google Scholar 

  45. Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, et al. Part 13: neonatal resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S543–60.

    PubMed  Google Scholar 

  46. Baquero H, Soliz A, Neira F, Venegas ME, Sola A. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics. 2006;117:1077–83.

    PubMed  Google Scholar 

  47. Weiner G, Zaichkin J, Kattwinkel J. Textbook of Neonatal Resuscitation, American Academy of Pediatrics; 2021.

  48. Chiruvolu A, Miklis KK, Chen E, Petrey B, Desai S. Delivery room management of meconium-stained newborns and respiratory support. Pediatrics. 2018;142:e20181485.

    PubMed  Google Scholar 

  49. Kumar A, Kumar P, Basu S. Endotracheal suctioning for prevention of meconium aspiration syndrome: a randomized controlled trial. Eur J Pediatr. 2019;178:1825–32.

    CAS  PubMed  Google Scholar 

  50. Trevisanuto D, Strand ML, Kawakami MD, Fabres J, Szyld E, Nation K, et al. Tracheal suctioning of meconium at birth for non-vigorous infants: a systematic review and meta-analysis. Resuscitation. 2020;149:117–26.

    PubMed  Google Scholar 

  51. Phattraprayoon N, Tangamornsuksan W, Ungtrakul T. Outcomes of endotracheal suctioning in non-vigorous neonates born through meconium-stained amniotic fluid: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021;106:31–8.

    PubMed  Google Scholar 

  52. Nangia S, Thukral A, Chawla D. Tracheal suction at birth in non-vigorous neonates born through meconium-stained amniotic fluid. Cochrane Database Syst Rev. 2021;6:CD012671.

    PubMed  Google Scholar 

  53. Wei Q, Chen W, Liang Q, Song S, Li J. Effect of endotracheal suctioning on infants born through meconium-stained amniotic fluid: a meta-analysis. Am J Perinatol. 2022.

  54. Liabsuetrakul, T., S. Meher, WHO Intrapartum Care Algorithms Working Group, Livia Ciabati, Lariza Laura De Oliveira, Renato Souza, Joyce Browne et al. “Intrapartum care algorithms for liquor abnormalities: oligohydramnios, meconium, blood and purulent discharge.” BJOG: An International Journal of Obstetrics & Gynaecology (2022).

  55. Dikou M, Xanthos T, Dimitropoulos I, Iliodromiti Z, Sokou R, Kafalidis G, et al. Routine tracheal intubation and meconium suctioning in non-vigorous neonates with meconium-stained amniotic fluid: a systematic review and meta-analysis. Diagnostics (Basel). 2022;12:881.

    PubMed  Google Scholar 

  56. Sheikh M, Nanda V, Kumar R, Khilfeh M. Neonatal outcomes since the implementation of no routine endotracheal suctioning of meconium-stained nonvigorous neonates. Am J Perinatol. 2022.

  57. Hansmann G, Apitz C, Abdul-Khaliq H, Alastalo TP, Beerbaum P, Bonnet D, et al. Executive summary. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart. 2016;102:ii86–100.

    CAS  PubMed  Google Scholar 

  58. Ball MK, Seabrook RB, Bonachea EM, Chen B, Fathi O, Nankervis CA, et al. Evidence-based guidelines for acute stabilization and management of neonates with persistent pulmonary hypertension of the newborn. Am J Perinatol. 2022.

  59. Rawat M, Chandrasekharan P, Gugino SF, Koenigsknecht C, Nielsen L, Wedgwood S, et al. Optimal oxygen targets in term lambs with meconium aspiration syndrome and pulmonary hypertension. Am J Respir Cell Mol Biol. 2020;63:510–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lakshminrusimha S, Swartz DD, Gugino SF, Ma CX, Wynn KA, Ryan RM, et al. Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res. 2009;66:539–44.

    PubMed  PubMed Central  Google Scholar 

  61. Rudolph AM, Yuan S. Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest. 1966;45:399–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lakshminrusimha S, Konduri GG, Steinhorn RH. Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J Perinatol. 2016;36:S12–9.

    PubMed  Google Scholar 

  63. Lakshminrusimha S, Russell JA, Steinhorn RH, Swartz DD, Ryan RM, Gugino SF, et al. Pulmonary hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen. Pediatr Res. 2007;62:313–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics. 2001;107:642–7.

    CAS  PubMed  Google Scholar 

  65. Endesfelder S, Strauß E, Bendix I, Schmitz T, Bührer C. Prevention of oxygen-induced inflammatory lung injury by caffeine in neonatal rats. Oxid Med Cell Longev. 2020;2020:3840124.

    PubMed  PubMed Central  Google Scholar 

  66. Goldsmith JP. Continuous positive airway pressure and conventional mechanical ventilation in the treatment of meconium aspiration syndrome. J Perinatol. 2008;28:S49–55.

    PubMed  Google Scholar 

  67. Montgomery KA, Rose RS. Can nasal continuous positive airway pressure be used as primary respiratory support for infants with meconium aspiration syndrome? J Perinatol. 2019;39:339–41.

    PubMed  Google Scholar 

  68. Toro-Huamanchumo CJ, Hilario-Gomez MM, Diaz-Reyes N, Caballero-Alvarado JA, Barboza JJ. The efficacy of CPAP in neonates with meconium aspiration syndrome: a systematic review and meta-analysis. Child (Basel). 2022;9:589.

    Google Scholar 

  69. Pandita A, Murki S, Oleti TP, Tandur B, Kiran S, Narkhede S, et al. Effect of nasal continuous positive airway pressure on infants with meconium aspiration syndrome: a randomized clinical trial. JAMA Pediatr. 2018;172:161–5.

    PubMed  Google Scholar 

  70. Chappell SE, Wolfson MR, Shaffer TH. A comparison of surfactant delivery with conventionial mechanical ventilation and partial liquid ventilation in meconium aspiration injury. Respir Med. 2001;95:612–7.

    CAS  PubMed  Google Scholar 

  71. Chen DM, Wu LQ, Wang RQ. Efficiency of high-frequency oscillatory ventilation combined with pulmonary surfactant in the treatment of neonatal meconium aspiration syndrome. Int J Clin Exp Med. 2015;8:14490–6.

    PubMed  PubMed Central  Google Scholar 

  72. Yang G, Qiao Y, Sun X, Yang T, Lv A, Deng M. The clinical effects of high-frequency oscillatory ventilation in the treatment of neonatal severe meconium aspiration syndrome complicated with severe acute respiratory distress syndrome. BMC Pediatr. 2021;21:560.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharma S, Clark S, Abubakar K, Keszler M. Tidal volume requirement in mechanically ventilated infants with meconium aspiration syndrome. Am J Perinatol. 2015;32:916–9.

    PubMed  Google Scholar 

  74. Fox WW, Berman LS, Downes JJ, Peckham GJ. The therapeutic application of end-expiratory pressure in the meconium aspiration syndrome. Pediatrics. 1975;56:214–7.

    CAS  PubMed  Google Scholar 

  75. Keszler MaGK. Goldsmith’s assisted ventilation of the neonate: an evidence-based approach to newborn respiratory care. Goldsmith J, editor. Philadelphia: Elsevier; 2021.

  76. McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis. 1988;137:1185–92.

    CAS  PubMed  Google Scholar 

  77. Singh BS, Clark RH, Powers RJ, Spitzer AR. Meconium aspiration syndrome remains a significant problem in the NICU: outcomes and treatment patterns in term neonates admitted for intensive care during a ten-year period. J Perinatol. 2009;29:497–503.

    CAS  PubMed  Google Scholar 

  78. Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA. Network AaNZN. Trends in use and outcome of newborn infants treated with high frequency ventilation in Australia and New Zealand, 1996–2003. J Paediatr Child Health. 2007;43:160–6.

    PubMed  Google Scholar 

  79. Kinsella JP, Truog WE, Walsh WF, Goldberg RN, Bancalari E, Mayock DE, et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr. 1997;131:55–62.

    CAS  PubMed  Google Scholar 

  80. Wiswell TE, Peabody SS, Davis JM, Slayter MV, Bent RC, Merritt TA. Surfactant therapy and high-frequency jet ventilation in the management of a piglet model of the meconium aspiration syndrome. Pediatr Res. 1994;36:494–500.

    CAS  PubMed  Google Scholar 

  81. Keszler M, Molina B, Butterfield AB, Subramanian KN. Combined high-frequency jet ventilation in a meconium aspiration model. Crit Care Med. 1986;14:34–8.

    CAS  PubMed  Google Scholar 

  82. Wiswell TE, Foster NH, Slayter MV, Hachey WE. Management of a piglet model of the meconium aspiration syndrome with high-frequency or conventional ventilation. Am J Dis Child. 1992;146:1287–93.

    CAS  PubMed  Google Scholar 

  83. Hess DR, Fink JB, Venkataraman ST, Kim IK, Myers TR, Tano BD. The history and physics of heliox. Respir Care. 2006;51:608–12.

    PubMed  Google Scholar 

  84. Ma J, Tang S, Shen L, Chen L, Li X, Li W, et al. A randomized single-center controlled trial of synchronized intermittent mandatory ventilation with heliox in newborn infants with meconium aspiration syndrome. Pediatr Pulmonol. 2021;56:2087–93.

    PubMed  Google Scholar 

  85. Girdhar A, Kumar H, Abbas A, Singh A. EBNEO commentary: randomised controlled trial of heliox in newborn infants with meconium aspiration syndrome. Acta Paediatr. 2022;111:1285–6.

    PubMed  Google Scholar 

  86. Szczapa T, Gadzinowski J. Use of heliox in the management of neonates with meconium aspiration syndrome. Neonatology. 2011;100:265–70.

    PubMed  Google Scholar 

  87. Mokra D, Calkovska A. Exogenous surfactant in the treatment of neonatal meconium aspiration syndrome. J Pediatr Intensive Care. 2012;1:49–60.

    PubMed  PubMed Central  Google Scholar 

  88. El Shahed AI, Dargaville PA, Ohlsson A, Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst Rev. 2014;2014:CD002054.

    PubMed  PubMed Central  Google Scholar 

  89. Abdelaal MA, Abushanab D, Al-Badriyeh D. Surfactant therapy for meconium aspiration syndrome in neonates: a systematic overview of systematic reviews and recent clinical trials. J Comp Eff Res. 2020;9:527–36.

    PubMed  Google Scholar 

  90. Natarajan CK, Sankar MJ, Jain K, Agarwal R, Paul VK. Surfactant therapy and antibiotics in neonates with meconium aspiration syndrome: a systematic review and meta-analysis. J Perinatol. 2016;36:S49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hui R, Jing-Jing P, Yun-Su Z, Xiao-Yu Z, Xiao-Qing C, Yang Y. Surfactant lavage for neonatal meconium aspiration syndrome—an updated meta-analysis. J Chin Med Assoc. 2020;83:761–73.

    PubMed  Google Scholar 

  92. Choi HJ, Hahn S, Lee J, Park BJ, Lee SM, Kim HS, et al. Surfactant lavage therapy for meconium aspiration syndrome: a systematic review and meta-analysis. Neonatology. 2012;101:183–91.

    PubMed  Google Scholar 

  93. Dargaville PA, Copnell B, Mills JF, Haron I, Lee JK, Tingay DG, et al. Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr. 2011;158:383–9.e2.

    CAS  PubMed  Google Scholar 

  94. Bandiya P, Nangia S, Saili A. Surfactant lung lavage vs. standard care in the treatment of meconium aspiration syndrome—a randomized trial. J Trop Pediatr. 2019;65:114–21.

    PubMed  Google Scholar 

  95. Arayici S, Sari FN, Kadioglu Simsek G, Yarci E, Alyamac Dizdar E, Uras N, et al. Lung lavage with dilute surfactant vs. bolus surfactant for meconium aspiration syndrome. J Trop Pediatr. 2019;65:491–7.

    PubMed  Google Scholar 

  96. Jain A, Giesinger RE, Dakshinamurti S, ElSayed Y, Jankov RP, Weisz DE, et al. Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group. J Perinatol. 2022;42:3–13.

    PubMed  Google Scholar 

  97. Ruffolo RR. The pharmacology of dobutamine. Am J Med Sci. 1987;294:244–8.

    PubMed  Google Scholar 

  98. Cheung PY, Barrington KJ. The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets. Crit Care. 2001;5:158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mohamed A, Nasef N, Shah V, McNamara PJ. Vasopressin as a rescue therapy for refractory pulmonary hypertension in neonates: case series. Pediatr Crit Care Med. 2014;15:148–54.

    PubMed  Google Scholar 

  100. Bassler D, Choong K, McNamara P, Kirpalani H. Neonatal persistent pulmonary hypertension treated with milrinone: four case reports. Biol Neonate. 2006;89:1–5.

    PubMed  Google Scholar 

  101. McNamara PJ, Laique F, Muang-In S, Whyte HE. Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care. 2006;21:217–22.

    CAS  PubMed  Google Scholar 

  102. Patel N. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients. Neonatology. 2012;102:130–6.

    PubMed  Google Scholar 

  103. El-Ghandour M, Hammad B, Ghanem M, Antonios MAM. Efficacy of milrinone plus sildenafil in the treatment of neonates with persistent pulmonary hypertension in resource-limited settings: results of a randomized, double-blind trial. Paediatr Drugs. 2020;22:685–93.

    PubMed  PubMed Central  Google Scholar 

  104. Imam SS, El-Farrash RA, Taha AS, Saleh GA. Milrinone versus sildenafil in treatment of neonatal persistent pulmonary hypertension: a randomized control trial. J Cardiovasc Pharm. 2022;80:746–52.

    CAS  Google Scholar 

  105. Gupta N, Kamlin CO, Cheung M, Stewart M, Patel N. Prostaglandin E1 use during neonatal transfer: potential beneficial role in persistent pulmonary hypertension of the newborn. Arch Dis Child Fetal Neonatal Ed. 2013;98:F186–8.

    PubMed  Google Scholar 

  106. Alsaleem M, Malik A, Lakshminrusimha S, Kumar VH. Hydrocortisone improves oxygenation index and systolic blood pressure in term infants with persistent pulmonary hypertension. Clin Med Insights Pediatr. 2019;13:1179556519888918.

    PubMed  PubMed Central  Google Scholar 

  107. Hari Gopal S, Patel N, Fernandes CJ. Use of prostaglandin E1 in the management of congenital diaphragmatic Hernia—a review. Front Pediatr. 2022;10:911588.

    PubMed  PubMed Central  Google Scholar 

  108. Le Duc K, Mur S, Sharma D, Aubry E, Recher M, Rakza T, et al. Prostaglandin E1 in infants with congenital diaphragmatic hernia (CDH) and life-threatening pulmonary hypertension. J Pediatr Surg. 2020;55:1872–8.

    PubMed  Google Scholar 

  109. Tripathi S, Saili A. The effect of steroids on the clinical course and outcome of neonates with meconium aspiration syndrome. J Trop Pediatr. 2007;53:8–12.

    PubMed  Google Scholar 

  110. Mokra D, Mokry J. Glucocorticoids in the treatment of neonatal meconium aspiration syndrome. Eur J Pediatr. 2011;170:1495–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ward M, Sinn J. Steroid therapy for meconium aspiration syndrome in newborn infants. Cochrane Database Syst Rev. 2003;2003:CD003485.

    PubMed  PubMed Central  Google Scholar 

  112. Perez M, Wedgwood S, Lakshminrusimha S, Farrow KN, Steinhorn RH. Hydrocortisone normalizes phosphodiesterase-5 activity in pulmonary artery smooth muscle cells from lambs with persistent pulmonary hypertension of the newborn. Pulm Circ. 2014;4:71–81.

    PubMed  PubMed Central  Google Scholar 

  113. Perez M, Lakshminrusimha S, Wedgwood S, Czech L, Gugino SF, Russell JA, et al. Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol. 2012;302:L595–603.

    CAS  PubMed  Google Scholar 

  114. Schulze-Neick I, Beghetti M. Issues related to the management and therapy of paediatric pulmonary hypertension. Eur Respir Rev. 2010;19:331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Barrington KJ, Finer N, Pennaforte T, Altit G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. 2017;1:CD000399.

    PubMed  Google Scholar 

  116. Abman SH, Ivy DD, Archer SL, Wilson K. Committee AAJGfPPH. Executive summary of the American Heart Association and American Thoracic society joint guidelines for pediatric pulmonary hypertension. Am J Respir Crit Care Med. 2016;194:898–906.

    PubMed  PubMed Central  Google Scholar 

  117. Liu CQ, Ma L, Tang LM, He XJ, Wei SF, Wang SX, et al. A randomized controlled study on the efficacy of inhaled nitric oxide in treatment of neonates with meconium aspiration syndrome. Zhonghua Er Ke Za Zhi. 2008;46:224–8.

    PubMed  Google Scholar 

  118. Kinsella JP, Abman SH. High-frequency oscillatory ventilation augments the response to inhaled nitric oxide in persistent pulmonary hypertension of the newborn: Nitric Oxide Study Group. Chest. 1998;114:100S.

    CAS  PubMed  Google Scholar 

  119. Mercier JC, Lacaze T, Storme L, Rozé JC, Dinh-Xuan AT, Dehan M. Disease-related response to inhaled nitric oxide in newborns with severe hypoxaemic respiratory failure. French Paediatric Study Group of Inhaled NO. Eur J Pediatr. 1998;157:747–52.

    CAS  PubMed  Google Scholar 

  120. Davis PJ, Shekerdemian LS. Meconium aspiration syndrome and extracorporeal membrane oxygenation. Arch Dis Child Fetal Neonatal Ed. 2001;84:F1–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. FDA Drug Safety Communication: FDA clarifies warning about pediatric use of revatio (sildenafil) for pulmonary arterial hypertension FDA. 2016.

  122. Fletcher K, Chapman R, Keene S. An overview of medical ECMO for neonates. Semin Perinatol. 2018;42:68–79.

    PubMed  Google Scholar 

  123. Hui TT, Danielson PD, Anderson KD, Stein JE. The impact of changing neonatal respiratory management on extracorporeal membrane oxygenation utilization. J Pediatr Surg. 2002;37:703–5.

    CAS  PubMed  Google Scholar 

  124. Mahmood B, Newton D, Pallotto EK. Current trends in neonatal ECMO. Semin Perinatol. 2018;42:80–8.

    PubMed  Google Scholar 

  125. Corno AF, Faulkner GM, Harvey C. Extra-corporeal membrane oxygenation for neonatal respiratory support. Semin Thorac Cardiovasc Surg. 2020;32:553–9.

    PubMed  Google Scholar 

  126. Mugford M, Elbourne D, Field D. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst Rev. 2008;3:CD001340.

    Google Scholar 

  127. Aabakken L, Karlsen TH, Albert J, Arvanitakis M, Chazouilleres O, Dumonceau JM, et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy. 2017;49:588–608.

    PubMed  Google Scholar 

  128. Shankar V, Paul VK, Deorari AK, Singh M. Do neonates with meconium aspiration syndrome require antibiotics? Indian J Pediatr. 1995;62:327–31.

    CAS  PubMed  Google Scholar 

  129. Lin HC, Su BH, Tsai CH, Lin TW, Yeh TF. Role of antibiotics in management of non-ventilated cases of meconium aspiration syndrome without risk factors for infection. Biol Neonate. 2005;87:51–5.

    PubMed  Google Scholar 

  130. Basu S, Kumar A, Bhatia BD. Role of antibiotics in meconium aspiration syndrome. Ann Trop Paediatr. 2007;27:107–13.

    PubMed  Google Scholar 

  131. Goel A, Nangia S, Saili A, Garg A, Sharma S, Randhawa VS. Role of prophylactic antibiotics in neonates born through meconium-stained amniotic fluid (MSAF)–a randomized controlled trial. Eur J Pediatr. 2015;174:237–43.

    PubMed  Google Scholar 

  132. Kelly LE, Shivananda S, Murthy P, Srinivasjois R, Shah PS. Antibiotics for neonates born through meconium-stained amniotic fluid. Cochrane Database Syst Rev. 2017;6:CD006183.

    PubMed  Google Scholar 

  133. Puthiyachirakkal M, Mhanna MJ. Pathophysiology, management, and outcome of persistent pulmonary hypertension of the newborn: a clinical review. Front Pediatr. 2013;1:23.

    PubMed  PubMed Central  Google Scholar 

  134. Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK, et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics. 2000;105:14–20.

    CAS  PubMed  Google Scholar 

  135. Thornton PD, Campbell RT, Mogos MF, Klima CS, Parsson J, Strid M. Meconium aspiration syndrome: incidence and outcomes using discharge data. Early Hum Dev. 2019;136:21–6.

    PubMed  Google Scholar 

  136. Djemal N, Ben Ammar H, Masmoudi K, Rguaieg R, Trigui L, Ben Hmad A, et al. Pulmonary function in children after neonatal meconium aspiration syndrome. Arch Pediatr. 2008;15:105–10.

    CAS  PubMed  Google Scholar 

  137. Beligere N, Rao R. Neurodevelopmental outcome of infants with meconium aspiration syndrome: report of a study and literature review. J Perinatol. 2008;28:S93–101.

    PubMed  Google Scholar 

  138. Davis RO, Philips JB, Harris BA, Wilson ER, Huddleston JF. Fatal meconium aspiration syndrome occurring despite airway management considered appropriate. Am J Obstet Gynecol. 1985;151:731–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AO: conceptualized and designed the study, performed literature review, wrote sections of the manuscript, contributed to Table and Figure development, critically reviewed and revised all sections of the manuscript for important intellectual content, and oversaw the project. CH: conceptualized the manuscript, performed literature review, wrote sections of the manuscript, and critically reviewed and revised all sections of the manuscript for important intellectual content. MC: performed literature review, and wrote sections of the manuscript of the manuscript. HAT: performed literature review and wrote a section of the manuscript. NO: conceptualized and designed the illustrations, and critically reviewed and revised the manuscript for important intellectual content. MKB: conceptualized the manuscript, performed literature review, wrote sections of the manuscript, contributed to Table development, critically reviewed and revised all sections of the manuscript for important intellectual content, and oversaw trainee contributions. All authors approved the final manuscript as submitted and agree to be accountable for all aspect of the work.

Corresponding author

Correspondence to Ahmed Osman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, A., Halling, C., Crume, M. et al. Meconium aspiration syndrome: a comprehensive review. J Perinatol 43, 1211–1221 (2023). https://doi.org/10.1038/s41372-023-01708-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01708-2

Search

Quick links