Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nasal intermittent positive pressure ventilation as a rescue therapy after nasal continuous positive airway pressure failure in infants with respiratory distress syndrome

Abstract

Objective

Evaluate whether nasal intermittent positive-pressure ventilation (NIPPV) as rescue therapy after initial nasal continuous positive airway (NCPAP) failure reduces need for invasive mechanical ventilation (IMV) in infants with respiratory distress syndrome (RDS).

Design

Retrospective cohort involving 156 preterm infants who failed initial NCPAP and were then submitted to NIPPV rescue therapy and classified into NIPPV success or failure, according to need for IMV.

Result

Of all infants included, 85 (54.5%) were successfully rescued with NIPPV while 71 (45.5%) failed. The NIPPV success group had significantly lower rates of bronchopulmonary dysplasia, peri/intraventricular hemorrhage, patent ductus arteriosus and greater survival without morbidities (all p ≤ 0.01). Infants who failed NIPPV had earlier initial NCPAP failure (p = 0.09). In final logistic regression model, birthweight ≤1000 g and need for surfactant remained significant factors for NIPPV failure.

Conclusion

NIPPV rescue therapy reduced the need for IMV in infants that failed NCPAP and was associated with better outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the study.
Fig. 2: Kaplan Meier Survival Curve.

Similar content being viewed by others

Data availability

The authors acknowledge that the data and materials are available to referees at submission and to readers promptly upon request.

References

  1. Owen LS, Manley BJ, Davis PG, Doyle LW. The evolution of modern respiratory care for preterm infants. Lancet [Internet]. 2017;389:1649–59. https://doi.org/10.1016/S0140-6736(17)30312-4.

    Article  PubMed  Google Scholar 

  2. Horbar JD, Edwards EM, Greenberg LT, Morrow KA, Soll RF, Buus-Frank ME, et al. Variation in performance of neonatal intensive care units in the United States. JAMA Pediatrics. 2017;171:306.

    Article  Google Scholar 

  3. Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res Part A - Clin Mol Teratol. 2014;100:145–57.

    Article  CAS  Google Scholar 

  4. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr [Internet]. 2018;197:300–8. https://doi.org/10.1016/j.jpeds.2018.01.043.

    Article  PubMed  Google Scholar 

  5. Dumpa V, Bhandari V. Non-invasive ventilatory strategies to decrease bronchopulmonary dysplasia—where are we in 2021? Children. 2021;8:1–11.

    Article  Google Scholar 

  6. Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2013;132:e1351–60.

    Article  PubMed  Google Scholar 

  7. Behnke J, Lemyre B, Czernik C, Zimmer KP, Ehrhardt H, Waitz M. Non-invasive ventilation in neonatology. Deutsches Aerzteblatt Online. 2019;116:177–83.

    Google Scholar 

  8. Alexiou S, Panitch HB. Physiology of non-invasive respiratory support. Semin Fetal Neonatal Med [Internet]. 2016;21:174–80. https://doi.org/10.1016/j.siny.2016.02.007.

    Article  PubMed  Google Scholar 

  9. Owen LS, Manley BJ. Nasal intermittent positive pressure ventilation in preterm infants: equipment, evidence, and synchronization. Semin Fetal Neonatal Med [Internet]. 2016;21:146–53. https://doi.org/10.1016/j.siny.2016.01.003.

    Article  PubMed  Google Scholar 

  10. Lemyre B, Laughon M, Bose C, Davis PG. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016;12:CD005384.

    PubMed  Google Scholar 

  11. Lemyre B, Davis PG, de Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Vol. 2017, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2017.

  12. Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, More K, Oommen VI, et al. Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: a systematic review and network meta-analysis. Pediatr Pulmonol. 2020;55:2924–39.

    Article  PubMed  Google Scholar 

  13. Jensen EA, Chaudhary A, Bhutta ZA, Kirpalani H. Non-invasive respiratory support for infants in low- and middle-income countries. Semin Fetal Neonatal Med. 2016;21:181–8.

    Article  PubMed  Google Scholar 

  14. Dargaville PA, Aiyappan A, de Paoli AG, Dalton RGB, Kuschel CA, Kamlin CO. et al. Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences. Neonatology. 2013;104:8–14.

    Article  CAS  PubMed  Google Scholar 

  15. de Jaegere AP, van der Lee JH, Canté C, van Kaam AH. Early prediction of nasal continuous positive airway pressure failure in preterm infants less than 30 weeks gestation. Acta Paediatrica Int J Paediatr. 2012;101:374–9.

    Article  Google Scholar 

  16. Ramos-Navarro C, Sanchez-Luna M, Sanz-López E, Maderuelo-Rodriguez E, Zamora-Flores E. Effectiveness of synchronized noninvasive ventilation to prevent intubation in preterm infants. Am J Perinatol Rep. 2016;06:e264–71.

    Article  Google Scholar 

  17. Badiee Z, Nekooie B, Mohammadizadeh M. Noninvasive positive pressure ventilation or conventional mechanical ventilation for neonatal continuous positive airway pressure failure. Int J Prev Med [Internet]. 2014;5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258678/?report=printable

  18. Bhandari V. Nasal intermittent positive pressure ventilation in the newborn: review of literature and evidence-based guidelines. J Perinatol [Internet]. 2010;30:505–12. https://doi.org/10.1038/jp.2009.165.

    Article  CAS  PubMed  Google Scholar 

  19. Meneses J, Bhandari V, Guilherme Alves J, Herrmann D. Noninvasive ventilation for respiratory distress syndrome: a randomized controlled trial. Pediatrics. 2011;127:300–7.

    Article  PubMed  Google Scholar 

  20. Olsen IE, Groveman SA, Lawson ML, Clark RH, Zemel BS. New intrauterine growth curves based on United States data. Pediatrics. 2010;125:e214–24.

    Article  PubMed  Google Scholar 

  21. Richardson DK, Corcoran JD, Escobar GJ, Lee SK. SNAP-II and SNAPPE-II: simplified newborn illness severity and mortality risk scores. J Pediatrics. 2001;138:92–100.

    Article  CAS  Google Scholar 

  22. Quinn GE. The international classification of retinopathy of prematurity revisited: an international committee for the classification of retinopathy of prematurity. Arch Ophthalmol. 2005;123:991–9.

    Article  Google Scholar 

  23. Papile L, Burnstein J, Burnstein R, Koffelertt. Incidence and evolution of subependyma and intraventricular hemorrhage: a study of infants with birthweight less than 1500g. J Pediatr. 1978;92:529–33.

    Article  CAS  PubMed  Google Scholar 

  24. Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am [Internet]. 1986;33:179–201. https://doi.org/10.1016/S0031-3955(16)34975-6.

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Muniraman H, Biniwale M, Ramanathan R. A review on non-invasive respiratory support for management of respiratory distress in extremely preterm infants. Front Pediatrics. 2020;8:1–17.

    Article  Google Scholar 

  26. Soll RF, Barkhuff W. Noninvasive ventilation in the age of surfactant administration. Clin Perinatol. 2019;46:493–516.

    Article  PubMed  Google Scholar 

  27. Lemyre B, Davis PG, de Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity. Cochrane Database Syst Rev. 2002; CD002272.

  28. Gulczyńska E, Szczapa T, Hożejowski R, Borszewska-Kornacka MK, Rutkowska M. Fraction of inspired oxygen as a predictor of CPAP failure in preterm infants with respiratory distress syndrome: a prospective multicenter study. Neonatology. 2019;116:171–8.

    Article  PubMed  Google Scholar 

  29. Rüegger CM, Owen LS, Davis PG. Nasal intermittent positive pressure ventilation for neonatal respiratory distress syndrome. Clin Perinatol [Internet]. 2021;48:725–44. https://doi.org/10.1016/j.clp.2021.07.004.

    Article  PubMed  Google Scholar 

  30. Ekhaguere O, Patel S, Kirpalani H. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure before and after invasive ventilatory support. Clin Perinatol. 2019;46:517–36.

    Article  PubMed  Google Scholar 

  31. McGillick EV, Orgeig S, Williams MT, Morrison JL. Risk of respiratory distress syndrome and efficacy of glucocorticoids: are they the same in the normally grown and growth-restricted infant? Reprod Sci. 2016;23:1459–72.

    Article  CAS  PubMed  Google Scholar 

  32. Malhotra A, Sasi A, Miller SL, Jenkin G, Polglase GR. The efficacy of surfactant replacement therapy in the growth-restricted preterm infant: What is the evidence? Front Pediatrics. 2014;2:1–5.

    Article  Google Scholar 

  33. Harsha SS, Archana BR. SNAPPE-II (score for neonatal acute physiology with perinatal extension-II) in predicting mortality and morbidity in NICU. J Clin Diagnostic Res. 2015;9:SC10–2.

    Google Scholar 

  34. Flannery DD, Edwards EM, Puopolo KM, Horbar JD. Early-onset sepsis among very preterm infants. Pediatr. 2021;148:e2021052456.

    Article  Google Scholar 

  35. Moretti C, Gizzi C. Synchronized nasal intermittent positive pressure ventilation. Clin Perinatol. 2021;48:745–59.

    Article  PubMed  Google Scholar 

  36. Waitz M, Mense L, Kirpalani H, Lemyre B. Nasal intermittent positive pressure ventilation for preterm neonates: synchronized or not? Clin Perinatol [Internet]. 2016;43:799–816. https://doi.org/10.1016/j.clp.2016.07.013.

    Article  PubMed  Google Scholar 

  37. Dumpa V, Katz K, Northrup V, Bhandari V. SNIPPV vs NIPPV: does synchronization matter. J Perinatol [Internet]. 2012;32:438–42. https://doi.org/10.1038/jp.2011.117.

    Article  CAS  PubMed  Google Scholar 

  38. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology. 2019;115:432–50.

    Article  PubMed  Google Scholar 

  39. Sardesai S, Biniwale M, Wertheimer F, Garingo A, Ramanathan R. Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future. Pediatr Res. 2017;81:240–8.

    Article  PubMed  Google Scholar 

  40. Isayama T, Iwami H, McDonald S, Beyene J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: a systematic review and meta-analysis. In: JAMA. 2016;316:611–24.

    Google Scholar 

  41. Chan KYY, Miller SL, Schmölzer GM, Stojanovska V, Polglase GR. Respiratory support of the preterm neonate: lessons about ventilation-induced brain injury from large animal models. Front Neurol. 2020;11:1–14.

    Article  Google Scholar 

  42. Ramaswamy VV, More K, Roehr CC, Bandiya P, Nangia S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: systematic review and network meta-analysis. Pediatr Pulmonol. 2020;55:2940–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CI conceptualized the study, participated in the study design, data collection and data analysis, and wrote and revised the paper. JM conceptualized the study, participated in the study design and data analysis, and wrote and revised the paper. JA participated in the study design, data analysis and revision. JC participated in the study design and data collection. EA participated in the data analysis. VB conceptualized the study, participated in the study design, and revised the paper.

Corresponding author

Correspondence to Jucille Meneses.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The research complied with the ethical principles established in the Declaration of Helsinki and was submitted to the ethics committee of the Instituto de Medicina Integral Professor Fernando Figueira, IMIP, Recife, Brazil. CAAE: 27431919.0.0000.5201.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishigami, A.C., Meneses, J., Alves, J.G. et al. Nasal intermittent positive pressure ventilation as a rescue therapy after nasal continuous positive airway pressure failure in infants with respiratory distress syndrome. J Perinatol 43, 311–316 (2023). https://doi.org/10.1038/s41372-023-01600-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01600-z

Search

Quick links