Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunoglobulin G and subclasses placental transfer in fetuses and preterm newborns: a systematic review

Abstract

Immunoglobulin G (IgG) and subclasses are the only class of antibodies capable of crossing placenta and providing protection against neonatal infectious diseases, especially in premature infants. This systematic review aimed to review the literature concerning the transplacental transfer of IgG and its subclasses in fetuses and preterm newborns and compare the results with data from term neonates. Eleven studies were included in the final review. Most studies demonstrated a lower transplacental passage of IgG2 than other subclasses in term and preterm newborns and a more efficient passage of total IgG and IgG1 after 37 weeks of gestational age. These results elucidate the physiology of IgG subclass transfer during pregnancy and may explain one of the reasons preterm newborns are especially susceptible to specific pathogens, such as encapsulated bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Fouda GG, Martinez DR, Swamy GK, Permar SR. The impact of IgG transplacental transfer on early life immunity. ImmunoHorizons. 2018;2:14–25. https://doi.org/10.4049/immunohorizons.1700057.

    Article  CAS  Google Scholar 

  2. Ciobanu AM, Dumitru AE, Gica N, Botezatu R, Peltecu G, Panaitescu AM. Benefits and risks of IgG transplacental transfer. Diagnostics. 2020;10:583. https://doi.org/10.3390/diagnostics10080583.

    Article  CAS  Google Scholar 

  3. EllingerI FuchsR. HFcRn-mediated transplacental immunoglobulin G transport: protection of and threat to the human fetus and newborn. Wien Med Wochenschr. 2012;162:207–13. https://doi.org/10.1007/s10354-012-0085-0.

    Article  Google Scholar 

  4. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  Google Scholar 

  5. Baker K, Qiao SW, Kuo T, Kobayashi K, Yoshida M, Lencer WI, et al. Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol. 2009;31:223–36. https://doi.org/10.1007/s00281-009-0160-9.

    Article  CAS  Google Scholar 

  6. Napodano C, Marino MP, Stefanile A, Pocino K, Scatena R, et al. Immunological role of IgG subclasses. Immunol Investig. 2020;50:427–44. https://doi.org/10.1080/08820139.2020.1775643.

    Article  CAS  Google Scholar 

  7. Ozdemir SA, Ozer EA, Kose S, Ilhan O, Ozturk C, Sutcuoglu S. Reference values of serum IgG and IgM levels in preterm and term newborns. J Matern Fetal Neonatal Med. 2016;29:972–6. https://doi.org/10.3109/14767058.2015.1027680.

    Article  CAS  Google Scholar 

  8. Melville JM, Moss TJM. The immune consequences of preterm birth. Front Neurosci. 2013;7:1–9. https://doi.org/10.3389/fnins.2013.00079.

    Article  CAS  Google Scholar 

  9. Lozano NA, Lozano A, Marini V, Saranz RJ, Blumberg RS, Baker K, et al. Expression of FcRn receptor in placental tissue and its relationship with IgG levels in term and preterm newborns. Am J Reprod Immunol. 2018;80:e12972. https://doi.org/10.1111/aji.12972.

    Article  CAS  Google Scholar 

  10. Kan B, Razzaghian HR, Lavoie PM. An immunological perspective on neonatal sepsis. Trends Mol Med. 2016;22:290–302. https://doi.org/10.1016/j.molmed.2016.02.001.

    Article  CAS  Google Scholar 

  11. Stach SCL, Brizot ML, Liao AW, Francisco RPV, Palmeira P, et al. Transplacental total IgG transfer in twin pregnancies. Am J Reprod Immunol. 2014;2:555–60. https://doi.org/10.1111/aji.12305.

    Article  CAS  Google Scholar 

  12. Clements T, Rice TF, Vamvakas G, Barnett S, Barnes M, Donaldson B, et al. Update on transplacental transfer of IgG Subclasses: impact of maternal and fetal factors. Front Immunol 2020;11:1920. https://doi.org/10.3389/fimmu.2020.01920.

    Article  CAS  Google Scholar 

  13. Van den Berg JP, Westerbeek EAM, Van der Klis FRM, Berbers GAM, Van Elburg RM. Transplacental transport of IgG antibodies to preterm infants: A review of the literature. Early Hum Dev. 2013;87:67–72.

    Article  Google Scholar 

  14. Morell A, Skvarile F, Van Lochem E, Kleemola M. Human IgG subclasses in maternal and fetal serum. Vox Sang. 1971;21:481–92. https://doi.org/10.1111/j.1423-0410.1971.tb04808.x.

    Article  CAS  Google Scholar 

  15. Schur PH, Alpert E, Alper A. Gamma G subgroups in human fetal, cord, and maternal sera. Clin Immunol Immunopathol. 1973;2:62–6. https://doi.org/10.1016/0090-1229(73)90036-6.

    Article  CAS  Google Scholar 

  16. Garty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of immunoglobulin G subclasses. Clin Diagn Lab Immunol. 1994;1:667–9. https://doi.org/10.1128/cdli.1.6.667-669.1994.

    Article  CAS  Google Scholar 

  17. Malek A, Sager R, Kuhn P, Nicolaides KH, Schneider H. Evolution of maternofetal transport of immunoglobulins during human pregnancy. Am J Reprod Immunol. 1996;36:248–55. https://doi.org/10.1111/j.1600-0897.1996.tb00172.x.

    Article  CAS  Google Scholar 

  18. Malek A, Sager R, Schneider H. Maternal-fetal transport of immunoglobulin G and its subclasses during the third trimester of human pregnancy. Am J Reprod Immunol. 1994;32:8–14. https://doi.org/10.1111/j.1600-0897.1994.tb00873.x.

    Article  CAS  Google Scholar 

  19. Costa-Carvalho BT, Vieria HM, Dimantas RB, Arslanian C, Naspitz CK, D Solé D, et al. Transfer of IgG subclasses across placenta in term and preterm newborns. Braz J Med Biol Res. 1996;29:201–4.

    CAS  Google Scholar 

  20. Akbulut H, Çelik I, Çelik A, Akbulut A, Ayar A. Placental transfer of total IGG and IGG subclasses in a Turkish population living in eastern Anatolia. Nobel Med. 2012;8:59–64.

    Google Scholar 

  21. Pitcher-Wilmott RW, Hindocha P, Wood CB. The placental transfer of IgG subclasses in human pregnancy. Clin Exp Immunol. 1980;41:303–8.

    CAS  Google Scholar 

  22. Hashira S, Okitsu-Negishi S, Yoshino K. Placental transfer of IgG subclasses in a Japanese population. Pediatr Int. 2000;42:337–42. https://doi.org/10.1046/j.1442-200x.2000.01245.x.

    Article  CAS  Google Scholar 

  23. Okoko BJ, Wesumperuma HL, Fern J, Yamuah LK, Hart CA. The transplacental transfer of IgG subclasses: influence of prematurity and low birthweight in the Gambian population. Ann Trop Paediatr. 2002;22:325–32. https://doi.org/10.1179/027249302125001985.

    Article  CAS  Google Scholar 

  24. Catty D, Seger R, Drew R, Stroder J, Metze H. IgG-subclass concentrations in Cord Sera from premature, full term and small-for dates babies. Eur J Pedia 1977;125:89–96.

    Article  CAS  Google Scholar 

  25. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:985646. https://doi.org/10.1155/2012/985646.

    Article  CAS  Google Scholar 

  26. Ferrante A, Beard LJ, Feldman RG. IgG subclass distribution of antibodies to bacterial and viral antigens. Pediatr Infect Dis J 1990;9:S16–24.

    Article  CAS  Google Scholar 

  27. Sharma M, Laroia D, Taluja RK, Mathur PS. Serum IgG at birth in preterm appropriate- and small-for-gestational age newborns. Indian J Pediatr. 1991;58:657–60. https://doi.org/10.1007/BF02820185.

    Article  CAS  Google Scholar 

  28. Ventolini G, Neiger R. Placental dysfunction: Pathophysiopathology and clinical considerations. J Obstet Gynaecol. 2006;26:728–30. https://doi.org/10.1080/01443610600955685.

    Article  CAS  Google Scholar 

  29. Twisselmann N, Bartsch YC, Pagel J, Wieg C, Hartz A, Ehlers M, et al. IgG Fc glycosylation patterns of preterm infants differ with gestational age. Front Immunol 2019;9:3166. https://doi.org/10.3389/fimmu.2018.03166.

    Article  CAS  Google Scholar 

  30. Hartter HK, Oyedele OI, Dietz K, Kreis S, Hoffman JP, Muller CP. Placental transfer and decay of maternally acquired antimeasles antibodies in Nigerian children. Pediatr Infect Dis J. 2000;19:635–41. https://doi.org/10.1097/00006454-200007000-00010.

    Article  CAS  Google Scholar 

  31. Van Den Berg JP, Westerbeek EAM, Van Der Klis FRM, Berbers GAM, Van Elburg RM. Transplacental transport of IgG antibodies to preterminfants: A review of the literature. Early Hum Dev. 2011;87:67–72. https://doi.org/10.1016/j.earlhumdev.2010.11.003.

    Article  CAS  Google Scholar 

  32. Borghia S, Bournazosa S, Thulinb NK, Lic C, Gajewskid A, Sherwood RW, et al. FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Proc Natl Acad Sci USA. 2020;117:12943–51. https://doi.org/10.1073/pnas.2004325117. 9.

    Article  CAS  Google Scholar 

  33. Wilcox CR, Holder B, Jones CE. Factors affecting the FcRn-mediated transplacental transfer of antibodies and implications for vaccination in pregnancy. Front Immunol 2017;8:1294. https://doi.org/10.3389/fimmu.2017.01294.

    Article  CAS  Google Scholar 

  34. Perez EE, Orange JS, Bonilla F, Chinen J, Chinn IK, Dorsey M, et al. Update on the use of immunoglobulin in human disease: A review of evidence. J Allergy Clin Immunol. 2017;139:S1–46.

    Article  CAS  Google Scholar 

  35. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev. 2020;1:CD001239. https://doi.org/10.1002/14651858.CD001239.pub6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RP and SA conceived the presented idea. VA and MC completed original literature search and methodology. All authors contributed to analyzing literature, synthesizing results, and writing manuscripts. All authors agree to the final manuscript version.

Corresponding author

Correspondence to Renan Augusto Pereira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, R.A., de Almeida, V.O., Vidori, L. et al. Immunoglobulin G and subclasses placental transfer in fetuses and preterm newborns: a systematic review. J Perinatol 43, 3–9 (2023). https://doi.org/10.1038/s41372-022-01528-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01528-w

Search

Quick links