Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prevention of severe brain injury in very preterm neonates: A quality improvement initiative

Abstract

Objective

To determine the impact of neuroprotection interventions bundle on the incidence of severe brain injury or early death (intraventricular hemorrhage grade 3/4 or death by 7 days or ventriculomegaly or cystic periventricular leukomalacia on 1-month head ultrasound, primary composite outcome) in very preterm (270/7 to ≤ 296/7 weeks gestational age) infants.

Study design

Prospective quality improvement initiative, from April 2017-September 2019, with neuroprotection interventions bundle including cerebral NIRS, TcCO2, and HeRO monitoring-based management algorithm, indomethacin prophylaxis, protocolized bicarbonate and inotropes use, noise reduction, and neutral positioning.

Result

There was a decrease in the incidence of the primary composite outcome in the intervention period on unadjusted (N = 11/99, pre-intervention to N = 0/127, intervention period, p < 0.001) and adjusted analysis (adjusted for birthweight and Apgar score <5 at 5 min, aOR = 0.042, 95% CI = 0.003–0.670, p = 0.024).

Conclusions

Neuroprotection interventions bundle was associated with significant decrease in severe brain injury or early death in very preterm infants.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Key driver diagram.
Fig. 2: Statistical process control chart showing incidence of severe brain injury or early death during the study period.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ment LR, Duncan CC, Ehrenkranz RA, Lange RC, Taylor KJ, Kleinman CS, et al. Intraventricular hemorrhage in the preterm neonate: timing and cerebral blood flow changes. J Pediatr. 1984;104:419–25.

    CAS  PubMed  Article  Google Scholar 

  2. Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K, et al. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 2014;133:55–62.

    PubMed  Article  Google Scholar 

  3. Payne AH, Hintz SR, Hibbs AM, Walsh MC, Vohr BR, Bann CM, et al. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr. 2013;167:451–9.

    PubMed  PubMed Central  Article  Google Scholar 

  4. Pappas A, Adams-Chapman I, Shankaran S, McDonald SA, Stoll BJ, Laptook AR, et al. Neurodevelopmental and behavioral outcomes in extremely premature neonates with ventriculomegaly in the absence of periventricular-intraventricular hemorrhage. JAMA Pediatr. 2018;172:32–42.

    PubMed  Article  Google Scholar 

  5. Gotardo JW, Volkmer NFV, Stangler GP, Dornelles AD, Bohrer BBA, Carvalho CG. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis. PLoS One. 2019;14:e0223427.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Mukerji A, Shah V, Shah PS. Periventricular/Intraventricular hemorrhage and neurodevelopmental outcomes: A meta-analysis. Pediatrics 2015;136:1132–43.

    PubMed  Article  Google Scholar 

  7. Twilhaar ES, Wade RM, de Kieviet JF, van Goudoever JB, van Elburg RM, Oosterlaan J. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: A meta-analysis and meta-regression. JAMA Pediatr. 2018;172:361–7.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Luu TM, Ment LR, Schneider KC, Katz KH, Allan WC, Vohr BR. Lasting effects of preterm birth and neonatal brain hemorrhage at 12 years of age. Pediatrics 2009;123:1037–44.

    PubMed  Article  Google Scholar 

  9. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001;50:553–62.

    CAS  PubMed  Article  Google Scholar 

  10. Kusters CD, Chen ML, Follett PL, Dammann O. “Intraventricular” hemorrhage and cystic periventricular leukomalacia in preterm infants: how are they related? J Child Neurol. 2009;24:1158–70.

    PubMed  PubMed Central  Article  Google Scholar 

  11. Vergani P, Locatelli A, Doria V, Assi F, Paterlini G, Pezzullo JC, et al. Intraventricular hemorrhage and periventricular leukomalacia in preterm infants. Obstet Gynecol. 2004;104:225–31.

    PubMed  Article  Google Scholar 

  12. Osborn DA, Evans N, Kluckow M. Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 2003;112:33–9.

    PubMed  Article  Google Scholar 

  13. Lee JY, Kim HS, Jung E, Kim ES, Shim GH, Lee HJ, et al. Risk factors for periventricular-intraventricular hemorrhage in premature infants. J Korean Med Sci. 2010;25:418–24.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93:F153–61.

    CAS  PubMed  Article  Google Scholar 

  15. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454.

    PubMed  Google Scholar 

  16. Kochan M, Leonardi B, Firestine A, McPadden J, Cobb D, Shah TA, et al. Elevated midline head positioning of extremely low birth weight infants: effects on cardiopulmonary function and the incidence of periventricular-intraventricular hemorrhage. J Perinatol. 2019;39:54–62.

    PubMed  Article  Google Scholar 

  17. Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev. 2010:CD000174. https://doi.org/10.1002/14651858.CD000174.pub2.

  18. Rabe H, Gyte GM, Diaz-Rossello JL, Duley L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev. 2019;9:CD003248.

    PubMed  Google Scholar 

  19. Kugelman A, Golan A, Riskin A, Shoris I, Ronen M, Qumqam N, et al. Impact of continuous capnography in ventilated neonates: A randomized, multicenter study. J Pediatr. 2016;168:56–61. e2

    PubMed  Article  Google Scholar 

  20. McCrea HJ, Ment LR. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol. 2008;35:777–92.

    PubMed  PubMed Central  Article  Google Scholar 

  21. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355:2725–32.

    CAS  PubMed  Article  Google Scholar 

  22. Zilberberg MD, Shorr AF, Kollef MH. Implementing quality improvements in the intensive care unit: Ventilator bundle as an example. Crit Care Med. 2009;37:305–9.

    PubMed  Article  Google Scholar 

  23. Romantsik O, Bruschettini M, Ley D. Intraventricular hemorrhage and white matter injury in preclinical and clinical studies. Neoreviews. 2019;20:e636–e52.

    PubMed  Article  Google Scholar 

  24. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.

    CAS  PubMed  Article  Google Scholar 

  25. Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child. 1981;56:900–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Noori S, Anderson M, Soleymani S, Seri I. Effect of carbon dioxide on cerebral blood flow velocity in preterm infants during postnatal transition. Acta Paediatr. 2014;103:e334–9.

    CAS  PubMed  Article  Google Scholar 

  27. Kaiser JR, Gauss CH, Pont MM, Williams DK. Hypercapnia during the first 3 days of life is associated with severe intraventricular hemorrhage in very low birth weight infants. J Perinatol. 2006;26:279–85.

    CAS  PubMed  Article  Google Scholar 

  28. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79:55–64.

    CAS  PubMed  Article  Google Scholar 

  29. Plomgaard AM, van Oeveren W, Petersen TH, Alderliesten T, Austin T, van Bel F, et al. The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatr Res. 2016;79:528–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Fairchild KD, Schelonka RL, Kaufman DA, Carlo WA, Kattwinkel J, Porcelli PJ, et al. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. Pediatr Res. 2013;74:570–5.

    PubMed  PubMed Central  Article  Google Scholar 

  31. Bhat R, Zayek M, Maertens P, Eyal F. A single-dose indomethacin prophylaxis for reducing perinatal brain injury in extremely low birth weight infants: a non-inferiority analysis. J Perinatol. 2019;39:1462–71.

    CAS  PubMed  Article  Google Scholar 

  32. van Alfen-van der Velden AA, Hopman JC, Klaessens JH, Feuth T, Sengers RC, Liem KD. Effects of rapid versus slow infusion of sodium bicarbonate on cerebral hemodynamics and oxygenation in preterm infants. Biol Neonate. 2006;90:122–7.

    PubMed  Article  CAS  Google Scholar 

  33. Lokesh L, Kumar P, Murki S, Narang A. A randomized controlled trial of sodium bicarbonate in neonatal resuscitation-effect on immediate outcome. Resuscitation 2004;60:219–23.

    CAS  PubMed  Article  Google Scholar 

  34. Lightburn MH, Gauss CH, Williams DK, Kaiser JR. Observational study of cerebral hemodynamics during dopamine treatment in hypotensive ELBW infants on the first day of life. J Perinatol. 2013;33:698–702.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Graven SN. Sound and the developing infant in the NICU: Conclusions and recommendations for care. J Perinatol. 2000;20:S88–93.

    CAS  PubMed  Article  Google Scholar 

  36. Pellicer A, Gaya F, Madero R, Quero J, Cabanas F. Noninvasive continuous monitoring of the effects of head position on brain hemodynamics in ventilated infants. Pediatrics 2002;109:434–40.

    PubMed  Article  Google Scholar 

  37. Emery JR, Peabody JL. Head position affects intracranial pressure in newborn infants. J Pediatr. 1983;103:950–3.

    CAS  PubMed  Article  Google Scholar 

  38. Ogrinc G, Davies L, Goodman D, Batalden P, Davidoff F, Stevens D. SQUIRE 2.0 (Standards for QUality Improvement Reporting Excellence): Revised publication guidelines from a detailed consensus process. J Nurs Care Qual. 2016;31:1–8.

    PubMed  Article  Google Scholar 

  39. Kribs A, Roll C, Gopel W, Wieg C, Groneck P, Laux R, et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: A randomized clinical trial. JAMA Pediatr. 2015;169:723–30.

    PubMed  Article  Google Scholar 

  40. Thorp JA, Parriott J, Ferrette-Smith D, Meyer BA, Cohen GR, Johnson J. Antepartum vitamin K and phenobarbital for preventing intraventricular hemorrhage in the premature newborn: A randomized, double-blind, placebo-controlled trial. Obstet Gynecol. 1994;83:70–6.

    CAS  PubMed  Google Scholar 

  41. McLendon D, Check J, Carteaux P, Michael L, Moehring J, Secrest JW, et al. Implementation of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants. Pediatrics 2003;111:e497–503.

    PubMed  Article  Google Scholar 

  42. Carteaux P, Cohen H, Check J, George J, McKinley P, Lewis W, et al. Evaluation and development of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants. Pediatrics 2003;111:e489–96.

    PubMed  Article  Google Scholar 

  43. Schmid MB, Reister F, Mayer B, Hopfner RJ, Fuchs H, Hummler HD. Prospective risk factor monitoring reduces intracranial hemorrhage rates in preterm infants. Dtsch Arztebl Int. 2013;110:489–96.

    PubMed  PubMed Central  Google Scholar 

  44. de Bijl-Marcus K, Brouwer AJ, De Vries LS, Groenendaal F, Wezel-Meijler GV. Neonatal care bundles are associated with a reduction in the incidence of intraventricular haemorrhage in preterm infants: A multicentre cohort study. Arch Dis Child Fetal Neonatal Ed. 2020;105:419–24.

    PubMed  Article  Google Scholar 

  45. Murthy P, Zein H, Thomas S, Scott JN, Abou Mehrem A, Esser MJ, et al. Neuroprotection care bundle implementation to decrease acute brain injury in preterm infants. Pediatr Neurol. 2020;110:42–8.

    PubMed  Article  Google Scholar 

  46. Ferreira DM, Girao ALA, AVS ES, Chaves EMC, de Almeida PC, Freire VS, et al. Application of a bundle in the prevention of peri-intraventricular hemorrhage in preterm newborns. J Perinat Neonatal Nurs. 2020;34:E5–E11.

    PubMed  Article  Google Scholar 

  47. Wallau CAK, Costa-Nobre DT, Leslie A, Guinsburg R. Impact of bundle implementation on the incidence of peri/intraventricular hemorrhage among preterm infants: a pre-post interventional study. Sao Paulo Med J. 2021;139:251–8.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the significant assistance of nurses and respiratory therapists in the neonatal intensive care unit at the University of Alabama Hospital for their contribution to this work, and the parents and infants in the RNICU.

Funding

No external funding was sought for the current study. We would like to thank the Perinatal Health and Human Development Research Program of the University of Alabama at Birmingham and the Children’s of Alabama Centennial Scholar Fund for supporting the divisional research projects.

Author information

Authors and Affiliations

Authors

Contributions

AK, MR, VS, WC, and NA, and were involved in the conceptualization of this study and in implementation of quality improvement initiatives. AB, SW, SY, AK, and VS were responsible for collecting data through chart review for this study. AFR, VS, MR were responsible for data analysis. All authors were involved in drafting and revising the paper and agree to be accountable for all aspects of the work and final approval of the version to be published. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Vivek V. Shukla or Manimaran Ramani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukla, V.V., Klinger, A., Yazdi, S. et al. Prevention of severe brain injury in very preterm neonates: A quality improvement initiative. J Perinatol (2022). https://doi.org/10.1038/s41372-022-01437-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-022-01437-y

Search

Quick links