Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fetal lung development via quantitative biomarkers from diffusion MRI and histological validation in rhesus macaques

Abstract

Objective

To demonstrate sensitivity of diffusion-weighted MRI (DW-MRI) to pulmonary cellular-space changes during normal in utero development using fetal rhesus macaques, compared to histological biomarkers.

Study design

In vivo/ex vivo DW-MRI was acquired in 26 fetal rhesus lungs (early-canalicular through saccular stages). Apparent diffusion coefficients (ADC) from MRI and tissue area density (H&E), alveolar type-II cells (ABCA3), and epithelial cells (TTF1) from histology were compared between gestational stages.

Results

In vivo/ex vivo ADC correlated with each other (Spearman ρ = 0.47, P = 0.038; Bland–Altman bias = 0.0835) and with area-density (in vivo ρ = -0.56, P = 0.011; ex vivo ρ = −0.83, P < 0.0001). In vivo/ex vivo ADC increased exponentially toward saturation with gestational stage (R2 = 0.49/0.49), while area-density decreased exponentially (R2 = 0.53). ABCA3 and TTF1 stains demonstrated expected fetal cellular development.

Conclusions

Fetal DW-MRI provides a non-invasive biomarker for pulmonary structural maturation, with a strong correlation to histological markers during tissue development in rhesus macaques. This method has strong potential for assessing human fetal development, particularly in patients with pulmonary hypoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative fetal lung data at the early-canalicular (top row), mid-canalicular (middle row), and saccular stages (bottom row).
Fig. 2: Changes in fetal pulmonary development via diffusion MRI and quantitative histology.
Fig. 3: Comparison of fetal lung ADC from in vivo and ex vivo diffusion MRI.
Fig. 4: Comparison of in vivo and ex vivo fetal lung ADC with quantitative histology.

Similar content being viewed by others

References

  1. Triebwasser JE, Treadwell MC. Prenatal prediction of pulmonary hypoplasia. Semin Fetal Neonatal Med. 2017;22:245–9.

    Article  Google Scholar 

  2. Al-Maary J, Eastwood MP, Russo FM, Deprest JA, Keijzer R. Fetal tracheal occlusion for severe pulmonary hypoplasia in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis of survival. Ann Surg. 2016;264:929–33.

    Article  Google Scholar 

  3. Dobrinskikh E, Al-Juboori SI, Shabeka U, Reisz JA, Zheng C, Marwan AI. Heterogeneous pulmonary response after tracheal occlusion: clues to fetal lung growth. J Surg Res. 2019;239:242–52.

    Article  Google Scholar 

  4. Gauthier TW, Brown LAS. In utero alcohol effects on foetal, neonatal and childhood lung disease. Paediatr Respir Rev. 2017;21:34–7.

    PubMed  Google Scholar 

  5. Visconti KC, DeFranco E, Kamath-Rayne BD. Contemporary practice patterns in the use of amniocentesis for fetal lung maturity(). J Matern Fetal Neonatal Med. 2018;31:2729–36.

    Article  Google Scholar 

  6. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167:700–7. http://www.ncbi.nlm.nih.gov/pubmed/23754213

  7. Osada H, Iitsuka Y, Masuda K, Sakamoto R, Kaku K, Seki K, et al. Application of lung volume measurement by three-dimensional ultrasonography for clinical assessment of fetal lung development. J Ultrasound Med. 2002;21:841–7.

    Article  Google Scholar 

  8. Meyers ML, Garcia JR, Blough KL, Zhang W, Cassady CI, Mehollin-Ray AR. Fetal lung volumes by MRI: normal weekly values from 18 through 38 weeks’ gestation. Am J Roentgenol. 2018;211:432–8.

    Article  Google Scholar 

  9. Ward VL, Nishino M, Hatabu H, Estroff JA, Barnewolt CE, Feldman HA, et al. Fetal lung volume measurements: determination with MR imaging–effect of various factors. Radiology. 2006;240:187–93.

    Article  Google Scholar 

  10. Schopper MA, Walkup LL, Tkach JA, Higano NS, Lim FY, Haberman B, et al. Evaluation of neonatal lung volume growth by pulmonary magnetic resonance imaging in patients with congenital diaphragmatic hernia. J Pediatr. 2017;188:96–102.e1.

    Article  Google Scholar 

  11. Adaikalam SA, Higano NS, Tkach JA, Yen Lim F, Haberman B, Woods JC, et al. Neonatal lung growth in congenital diaphragmatic hernia: evaluation of lung density and mass by pulmonary MRI. Pediatr Res. 2019;86:635–40.

    Article  CAS  Google Scholar 

  12. Kasprian G, Del Rio M, Prayer D. Fetal diffusion imaging: pearls and solutions. Top Magn Reson Imaging. 2010;21:387–94.

    Article  Google Scholar 

  13. Afacan O, Gholipour A, Mulkern RV, Barnewolt CE, Estroff JA, Connolly SA, et al. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: correlation with gestational age. J Magn Reson Imaging. 2016;44:1650–5.

    Article  Google Scholar 

  14. Balassy C, Kasprian G, Brugger PC, Csapo B, Weber M, Hormann M, et al. Diffusion-weighted MR imaging of the normal fetal lung. Eur Radiol. 2008;18:700–6.

    Article  Google Scholar 

  15. Lee W, Krisko A, Shetty A, Yeo L, Hassan SS, Gotsch F, et al. Non-invasive fetal lung assessment using diffusion-weighted imaging. Ultrasound Obstet Gynecol. 2009;34:673–7.

    Article  CAS  Google Scholar 

  16. Cannie M, Jani J, De Keyzer F, Roebben I, Dymarkowski S, Deprest J. Diffusion-weighted MRI in lungs of normal fetuses and those with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2009;34:678–86.

    Article  CAS  Google Scholar 

  17. Schittny JC. Development of the lung. Cell Tissue Res. 2017;367:427–44.

    Article  Google Scholar 

  18. Tarantal AF, Chen H, Shi TT, Lu C-H, Fang AB, Buckley S, et al. Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis. Eur Respir J. 2010;36:907–14 http://erj.ersjournals.com/content/36/4/907.abstract

  19. Woods J, Schittny J. Lung structure at preterm and term birth. In: Jobe A, Whitsett J, Abman S, editors. Fetal lung development - clinical correlates & future technologies. New York: Cambridge University Press; 2016. p. 126–40.

  20. Jimenez VA, Wang X, Newman N, Walter NAR, Gonzales S, Lo JO, et al. Detecting neurodevelopmental effects of early-gestation ethanol exposure: a nonhuman primate model of ethanol drinking during pregnancy. Alcohol Clin Exp Res. 2019;43:250–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Cuzon Carlson VC, Studholme C, Newman N, Ford MM, Grant KA, et al. In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques. Proc Natl Acad Sci USA. 2020;117:10035–44.

    Article  CAS  Google Scholar 

  22. Laffins MM, Mellal N, Almlie CL, Regalia DE. Evaluation of infrared thermometry in cynomolgus macaques (Macaca fascicularis). J Am Assoc Lab Anim Sci. 2017;56:84–9.

    PubMed  PubMed Central  Google Scholar 

  23. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–44.

    Article  Google Scholar 

  24. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    Article  Google Scholar 

  25. Moore RJ, Strachan B, Tyler DJ, Baker PN, Gowland PA. In vivo diffusion measurements as an indication of fetal lung maturation using echo planar imaging at 0.5T. Magn Reson Med. 2001;45:247–53.

    Article  CAS  Google Scholar 

  26. Guo M, Du Y, Gokey JJ, Ray S, Bell SM, Adam M, et al. Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun. 2019;10:37.

    Article  Google Scholar 

  27. Stahlman MT, Besnard V, Wert SE, Weaver TE, Dingle S, Xu Y, et al. Expression of ABCA3 in developing lung and other tissues. J Histochem Cytochem J Histochem Soc. 2007;55:71–83.

    Article  CAS  Google Scholar 

  28. Wang X, Gomutputra P, Wolgemuth DJ, Baxi LV. Acute alcohol exposure induces apoptosis and increases histone H3K9/18 acetylation in the mid-gestation mouse lung. Reprod Sci. 2010;17:384–90.

    Article  CAS  Google Scholar 

  29. Probyn ME, Cuffe JSM, Zanini S, Moritz KM. The effects of low-moderate dose prenatal ethanol exposure on the fetal and postnatal rat lung. J Dev Orig Health Dis. 2013;4:358–67.

    Article  CAS  Google Scholar 

  30. Kenna K, Sozo F, De Matteo R, Hanita T, Gray SP, Tare M, et al. Alcohol exposure during late gestation: multiple developmental outcomes in sheep. J Dev Orig Health Dis. 2012;3:224–36.

    Article  CAS  Google Scholar 

  31. Zelner I, Kenna K, Brien JF, Bocking A, Harding R, Walker D, et al. Meconium fatty acid ethyl esters as biomarkers of late gestational ethanol exposure and indicator of ethanol-induced multi-organ injury in fetal sheep. PLoS ONE. 2013;8:e59168.

    Article  CAS  Google Scholar 

  32. Higano NS, Fleck RJ, Spielberg DR, Walkup LL, Hahn AD, Thomen RP, et al. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT. J Magn Reson Imaging. 2017;46:992–1000.

    Article  Google Scholar 

  33. Hahn AD, Higano NS, Walkup LL, Thomen RP, Cao X, Merhar SL, et al. Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J Magn Reson Imaging. 2017;45:463–71.

    Article  Google Scholar 

  34. Higano NS, Spielberg DR, Fleck RJ, Schapiro AH, Walkup LL, Hahn AD, et al. Neonatal pulmonary magnetic resonance imaging of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am J Respir Crit Care Med. 2018;198:1302–11.

    Article  Google Scholar 

  35. Yoder LM, Higano NS, Schapiro AH, Fleck RJ, Hysinger EB, Bates AJ, et al. Elevated lung volumes in neonates with bronchopulmonary dysplasia measured via MRI. Pediatr Pulmonol. 2019;54:1311–8.

    PubMed  Google Scholar 

  36. Gouwens KR, Higano NS, Marks KT, Stimpfl JN, Hysinger EB, Woods JC, et al. Magentic resonance imaging evaluation of regional lung vts in severe neonatal bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2020;202:1024–31.

    Article  CAS  Google Scholar 

  37. Hahn AD, Malkus A, Kammerman J, Higano N, Walkup L, Woods J, et al. Characterization of R2 and tissue density in the human lung: application to neonatal imaging in the intensive care unit. Magn Reson Med. 2020;84:920–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Oregon National Primate Research Center and the Imaging Research Center at Cincinnati Children’s Hospital. This publication was made possible, in part, using the Cincinnati Children’s Confocal Imaging Center; we specifically acknowledge Evan Meyer for assistance with tissue area-density measurements.

Author contributions

NSH/XC/JG/XW/ALF prepared samples and performed experiments. CDK/JPB/JCW supervised work. NSH/XC wrote manuscript. All authors provided feedback and shaped analysis, interpretation, and manuscript.

Funding

National Institutes of Health: R01 AA021981, R01 HL131634, and T32 HL007752. The Research Foundation at Cincinnati Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nara S. Higano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higano, N.S., Cao, X., Guo, J. et al. Fetal lung development via quantitative biomarkers from diffusion MRI and histological validation in rhesus macaques. J Perinatol 42, 866–872 (2022). https://doi.org/10.1038/s41372-021-01236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01236-x

Search

Quick links