Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Acute right ventricular failure associated with pulmonary hypertension in pediatrics: understanding the hemodynamic profiles

Abstract

Pulmonary hypertension (PHTN) is a common pathology in pediatrics, arising from a diverse array of etiologies and manifesting in equally diverse patient populations. The inpatient management of these infants and children may be complicated by dynamic and at times severe increases in pulmonary vascular resistance (PVR) and right ventricular (RV) afterload. Yet absent are cognitively accessible heuristics in the field whereby providers can reconcile the various clinical manifestations they observe with an understanding of the cardiac physiology at play, and therefore, appropriate physiology-driven interventions. Described herein is a framework for understanding the pathophysiology of four clinical phenotypes which are driven by two echocardiographic patient characteristics: the presence or absence of an atrial communication and the capacity of the right ventricle to maintain ventricular-vascular coupling. Application of this paradigm may facilitate accurate interpretation of observed clinical data, and alignment of treatment strategies with the underlying pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paradigm for understanding the physiologic manifestations of acute right ventricular failure.

Similar content being viewed by others

References

  1. Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. J Heart Lung Transplant. 2014;33:123–6.

    Article  Google Scholar 

  2. Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An official American thoracic society research statement. Am J respiratory Crit Care Med. 2018;198:e15–e43.

    Article  Google Scholar 

  3. von Anrep G. On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol. 1912;45:307–17.

    Article  Google Scholar 

  4. Rain S, Handoko ML, Trip P, Gan CT, Westerhof N, Stienen GJ, et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation. 2013;128:2016–25.

    Article  CAS  Google Scholar 

  5. Trip P, Rain S, Handoko ML, van der Bruggen C, Bogaard HJ, Marcus JT, et al. Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respiratory J. 2015;45:1603 LP–1612.

    Article  Google Scholar 

  6. Anton VN, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43.

    Google Scholar 

  7. Borgdorff MAJ, Bartelds B, Dickinson MG, Steendijk P, de Vroomen M, Berger RMF. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol-Heart Circulatory Physiol. 2013;305:H354–64.

    Article  CAS  Google Scholar 

  8. Gaynor SL, Maniar HS, Bloch JB, Paul S, Moon MR. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation. 2005;112:I212–8.

    Article  Google Scholar 

  9. Gan CT-J, Lankhaar J-W, Marcus JT, Westerhof N, Marques KM, Bronzwaer JGF, et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart circulatory Physiol. 2006;290:H1528–33.

    Article  CAS  Google Scholar 

  10. Friedberg MK, Cho M-Y, Li J, Assad RS, Sun M, Rohailla S, et al. Adverse biventricular remodeling in isolated right ventricular hypertension is mediated by increased transforming growth factor–β1 signaling and is abrogated by angiotensin receptor blockade. Am J Respiratory Cell Mol Biol. 2013;49:1019–28.

    Article  CAS  Google Scholar 

  11. Kozak MF, Redington A, Yoo S-J, Seed M, Greiser A, Grosse-Wortmann L. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study. Pediatr Radiol. 2014;44:403–9.

    Article  Google Scholar 

  12. Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797–804.

    Article  Google Scholar 

  13. Evers PD, Critser PJ, Cash M, Magness M, Hirsch R. Prognostic value of change in cardiac index after prostacyclin initiation in pediatric pulmonary hypertension. Pediatr Cardiol. 2021;42:116–22.

    Article  Google Scholar 

  14. Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circulation Res. 1954;2:326–32.

    Article  CAS  Google Scholar 

  15. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Ann Intern Med. 1991;115:343–9.

    Article  Google Scholar 

  16. Raymond RJ, Hinderliter AL, Willis PW, David R, Caldwell EJ, William W, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.

    Article  Google Scholar 

  17. Gual-Capllonch F, Lupón J, Bancu I, Graterol F, Ferrer-Sistach E, Teis A, et al. Preload dependence of pulmonary haemodynamics and right ventricular performance. Clin Res Cardiol. 2021. https://doi.org/10.1007/s00392-021-01820-3.

  18. Apitz C, Honjo O, Friedberg M, Assad R, van Arsdell G, Humpl T, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovascular Surg. 2012;60:17–23.

    Article  Google Scholar 

  19. Inamura N, Kubota A, Nakajima T, Kayatani F, Okuyama H, Oue T, et al. A proposal of new therapeutic strategy for antenatally diagnosed congenital diaphragmatic hernia. J Pediatr Surg. 2005;40:1315–9.

    Article  Google Scholar 

  20. Cheung PY, Barrington KJ. The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets. Crit Care. 2001;5:158–66.

    Article  CAS  Google Scholar 

  21. Givertz MM, Hare JM, Loh E, Gauthier DF, Colucci WS. Effect of bolus milrinone on hemodynamic variables and pulmonary vascular resistance in patients with severe left ventricular dysfunction: a rapid test for reversibility of pulmonary hypertension. J Am Coll Cardiol. 1996;28:1775–80.

    Article  CAS  Google Scholar 

  22. Kinsella JP, Steinhorn RH, Mullen MP, Hopper RK, Keller RL, Ivy DD, et al. The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J Pediatr. 2018;197:17–22.

    Article  Google Scholar 

  23. Siehr SL, Feinstein JA, Yang W, Peng LF, Ogawa MT, Ramamoorthy C. Hemodynamic effects of phenylephrine, vasopressin, and epinephrine in children with pulmonary hypertension: a pilot study. Pediatr Crit Care Med. 2016;17:428–37.

    Article  Google Scholar 

  24. Belenkie I, Horne SG, Dani R, Smith ER, Tyberg JV. Effects of aortic constriction during experimental acute right ventricular pressure loading: Further insights into diastolic and systolic ventricular interaction. Circulation. 1995;92:546–54.

    Article  CAS  Google Scholar 

  25. Cingolani HE, Pérez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circulatory Physiol. 2012;304:H175–82.

    Article  Google Scholar 

  26. Zierer A, Melby SJ, Voeller RK, Moon MR. Interatrial shunt for chronic pulmonary hypertension: differential impact of low-flow vs. high-flow shunting. Am J Physiol Heart Circulatory Physiol. 2009;296:H639–44.

    Article  CAS  Google Scholar 

  27. Critser PJ, Evers PD, McGovern E, Cash M, Hirsch R. Balloon atrial septostomy as initial therapy in pediatric pulmonary hypertension. Pulm Circulation. 2020;10:2045894020958970.

    Article  Google Scholar 

  28. Brooks H, Kirk ES, Vokonas PS, Urschel CW, Sonnenblick EH. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Investig. 1971;50:2176–83.

    Article  CAS  Google Scholar 

  29. Kaye D, Shah SJ, Borlaug BA, Gustafsson F, Komtebedde J, Kubo S, et al. Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure. J Card Fail. 2014;20:212–21.

    Article  Google Scholar 

Download references

Acknowledgements

Christopher P. Marcella, RDCS, FASE for the artistic myocardial renditions.

Author information

Authors and Affiliations

Authors

Contributions

P.D.E. conceptualized and designed the concepts, drafted portions of the initial manuscript, and approved the final manuscript as submitted. B.S. and L.B.A. refined the concepts, drafted portions of the initial manuscript, and approved the final manuscript as submitted.

Corresponding author

Correspondence to Patrick D. Evers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evers, P.D., Scottoline, B. & Armsby, L.B. Acute right ventricular failure associated with pulmonary hypertension in pediatrics: understanding the hemodynamic profiles. J Perinatol 42, 139–142 (2022). https://doi.org/10.1038/s41372-021-01231-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01231-2

Search

Quick links