Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vitamin D and associated perinatal–neonatal outcomes among extremely low-birth-weight infants

Abstract

Objective

To evaluate vitamin D inadequacy among extremely low-birth-weight (ELBW, <1000 g) infants and the association between circulating vitamin D concentrations and perinatal–neonatal outcomes.

Study design

Prospective cohort study of ELBW infants in the neonatal ICU. Blood was collected within the first 3 days after birth after obtaining informed consent. Circulating 25-hydroxyvitamin D concentrations (25(OH)D) were quantified using liquid chromatography–tandem mass spectroscopy and classified as vitamin D deficient, insufficient, or adequate ( < 20, 20–30, or > 30 ng/mL, respectively). Associations between 25(OH)D and perinatal–neonatal outcomes were determined by multivariable regression, adjusted for covariates that differ in the bivariate analysis.

Results

Of the 60 ELBW infants enrolled, 13 (22%) were vitamin D deficient, 15 (25%) were insufficient, and 32 (53%) were adequate. 25(OH)D levels were positively associated with fetal growth restriction and prolonged rupture of the membranes.

Conclusions

Vitamin D inadequacy was frequent among ELBW infants. Circulating vitamin D concentrations were significantly associated with perinatal outcomes in this contemporary cohort.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Underwood MA. Human milk for the premature infant. Pediatr Clin North Am. 2013;60:189–207.

    Article  PubMed  Google Scholar 

  3. Dror DK, Allen LH. Vitamin D inadequacy in pregnancy: biology, outcomes, and interventions. Nutr Rev. 2010;68:465–77.

    Article  PubMed  Google Scholar 

  4. Lange NE, Litonjua A, Hawrylowicz CM, Weiss S. Vitamin D, the immune system and asthma. Expert Rev Clin Immunol. 2009;5:693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    Article  CAS  Google Scholar 

  6. Hart PH, Lucas RM, Walsh JP, Zosky GR, Whitehouse AJ, Zhu K, et al. Vitamin D in fetal development: findings from a birth cohort study. Pediatrics. 2015;135:e167–73.

    Article  PubMed  Google Scholar 

  7. Hollis BW, Wagner CL. New insights into the vitamin D requirements during pregnancy. Bone Res. 2017;5:17030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De-Regil LM, Palacios C, Lombardo LK, Pena-Rosas JP Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2016;CD008873.

  9. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, et al. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab. 2005;90:3215–24.

    Article  CAS  PubMed  Google Scholar 

  10. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    Article  CAS  PubMed  Google Scholar 

  11. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Higgins RD, Saade G, Polin RA, Grobman WA, Buhimschi IA, Watterberg K, et al. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: summary of a workshop. Obstet Gynecol. 2016;127:426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am. 1986;33:179–201.

    Article  CAS  PubMed  Google Scholar 

  14. International Committee for the Classification of Retinopathy of P. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol. 2005;123:991–9.

    Article  Google Scholar 

  15. Kovacs CS. Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr. 2008;88:520S–8S.

    Article  CAS  PubMed  Google Scholar 

  16. Wierzejska R, Jarosz M, Sawicki W, Bachanek M, Siuba-Strzelinska M Vitamin D concentration in maternal and umbilical cord blood by season. Int J Environ Res Public Health. 2017;14(10):1121–30.

    Article  PubMed Central  Google Scholar 

  17. Fort P, Salas AA, Nicola T, Craig CM, Carlo WA, Ambalavanan N. A comparison of 3 vitamin D dosing regimens in extremely preterm infants: a randomized controlled trial. J Pediatr. 2016;174:132–8 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tergestina M, Rebekah G, Job V, Simon A, Thomas N. A randomized double-blind controlled trial comparing two regimens of vitamin D supplementation in preterm neonates. J Perinatol. 2016;36:763–7.

    Article  CAS  PubMed  Google Scholar 

  19. Yu RQ, Zhao X, Chen DZ, Liao XP, Zhou Q. [Vitamin D level at birth and influencing factors in preterm infants]. Zhongguo Dang Dai Er Ke Za Zhi. 2017;19:800–5.

    PubMed  Google Scholar 

  20. Yazdanpanah M, Bailey D, Walsh W, Wan B, Adeli K. Analytical measurement of serum 25-OH-vitamin D(3), 25-OH-vitamin D(2) and their C3-epimers by LC-MS/MS in infant and pediatric specimens. Clin Biochem. 2013;46:1264–71.

    Article  CAS  PubMed  Google Scholar 

  21. Bailey D, Perumal N, Yazdanpanah M, Al Mahmud A, Baqui AH, Adeli K, et al. Maternal-fetal-infant dynamics of the C3-epimer of 25-hydroxyvitamin D. Clin Biochem. 2014;47:816–22.

    Article  CAS  PubMed  Google Scholar 

  22. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.

    Article  CAS  PubMed  Google Scholar 

  23. Haagensen AL, Feldman HA, Ringelheim J, Gordon CM. Low prevalence of vitamin D deficiency among adolescents with anorexia nervosa. Osteoporos Int. 2008;19:289–94.

    Article  CAS  PubMed  Google Scholar 

  24. Cooper NA, Moores R. East London Preterm Prevention C. A review of the literature regarding nutritional supplements and their effect on vaginal flora and preterm birth. Curr Opin Obstet Gynecol. 2014;26:487–92.

    Article  PubMed  Google Scholar 

  25. Calton EK, Keane KN, Newsholme P, Soares MJ. The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS ONE. 2015;10:e0141770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibson CC, Davis CT, Zhu W, Bowman-Kirigin JA, Walker AE, Tai Z, et al. Dietary vitamin D and its metabolites non-genomically stabilize the endothelium. PLoS ONE. 2015;10:e0140370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Al-Garawi A, Carey VJ, Chhabra D, Mirzakhani H, Morrow J, Lasky-Su J, et al. The role of vitamin D in the transcriptional program of human pregnancy. PLoS ONE. 2016;11:e0163832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Javorski N, Lima CAD, Silva LVC, Crovella S, de Azevedo Silva J. Vitamin D receptor (VDR) polymorphisms are associated to spontaneous preterm birth and maternal aspects. Gene. 2018;642:58–63.

    Article  CAS  PubMed  Google Scholar 

  29. Say B, Uras N, Sahin S, Degirmencioglu H, Oguz SS, Canpolat FE. Effects of cord blood vitamin D levels on the risk of neonatal sepsis in premature infants. Korean J Pediatr. 2017;60:248–53.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joung KE, Burris HH, Van Marter LJ, McElrath TF, Michael Z, Tabatabai P, et al. Vitamin D and bronchopulmonary dysplasia in preterm infants. J Perinatol. 2016;36:878–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Onwuneme C, Martin F, McCarthy R, Carroll A, Segurado R, Murphy J, et al. The association of vitamin D status with acute respiratory morbidity in preterm infants. J Pediatr. 2015;166:1175–80 e1.

    Article  CAS  PubMed  Google Scholar 

  32. Koroglu OA, Onay H, Cakmak B, Bilgin B, Yalaz M, Tunc S, et al. Association of vitamin D receptor gene polymorphisms and bronchopulmonary dysplasia. Pediatr Res. 2014;76:171–6.

    Article  CAS  PubMed  Google Scholar 

  33. Shah BA, Padbury JF. Neonatal sepsis: an old problem with new insights. Virulence. 2014;5:170–8.

    Article  PubMed  Google Scholar 

  34. Shah BA, Migliori A, Kurihara I, Sharma S, Lim YP, Padbury J. Blood level of inter-alpha inhibitor proteins distinguishes necrotizing enterocolitis from spontaneous intestinal perforation. J Pediatr. 2017;180:135–40 e1.

    Article  CAS  PubMed  Google Scholar 

  35. Vo P, Bair-Merritt M, Camargo CA. The potential role of vitamin D in the link between obesity and asthma severity/control in children. Expert Rev Respir Med. 2015;9:309–25.

    CAS  Google Scholar 

  36. Couchman L, Moniz CF. Analytical considerations for the biochemical assessment of vitamin D status. Ther Adv Musculoskelet Dis. 2017;9:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Itsuka Kurihara and Alison Migliori at the Women and Infants Hospital of Rhode Island for assistance in data collection, and Drs. Marilyn Escobedo and Rita Raman at the University of Oklahoma for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birju A. Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Portions of the study were presented at the annual meeting of the Pediatric Academic Societies, San Francisco, CA, May 6–9 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B.A., Padbury, J.F., Anderson, M.P. et al. Vitamin D and associated perinatal–neonatal outcomes among extremely low-birth-weight infants. J Perinatol 38, 1318–1323 (2018). https://doi.org/10.1038/s41372-018-0203-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0203-y

Search

Quick links