Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PGC-1α gene transfer restores adhesion and reendothelialization of endothelial progenitor cells from patients with hypertension

Abstract

Endothelial progenitor cells (EPCs) play an important role in endothelial vascular development and endothelial repair. The upregulation of functional gene expression in EPCs may contribute to the maintenance of EPC-based endothelial repair. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a powerful regulator of mitochondrial biogenesis and antioxidant defense, but its impact on early EPCs remains poorly understood. This study was designed to investigate whether decline in PGC-1α expression impairs in vitro adhesion, migration, and in vivo reendothelialization capacity of early EPCs from patients with hypertension. We engineered an over-expression of PGC-1α within EPCs from hypertensive patients, which were transduced with an adenoviral vector encoding the human PGC-1α gene. Then we tested the migration and adhesion function of EPCs in vitro and endothelium-reparative capacity in vivo with a nude mouse model of carotid artery injury. Our data revealed for the first time that PGC-1α expression of EPCs is lower in hypertensive patients than that in healthy subjects. Meanwhile, the in vitro adhesion and migration function, in vivo endothelial repair capacity of early EPCs were significantly reduced in hypertensive patients compared with normal subjects. Furthermore, PGC-1α gene transfer contributes to increased adhesion in vitro and enhanced endothelium-reparative capacity in vivo of EPCs from hypertensive patients through the augmented expression of PGC-1α. Thus, upregulation of PGC-1α expression of EPCs may be a novel complementary therapeutic target to increase endothelium-reparative capacity in hypertensive patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dysfunction and reduced PGC-1α expression of early EPCs in hypertension.
Fig. 2: Effects of Ad5/PGC-1α gene transfer on in vitro functions and in vivo reendothelialization capacity of early EPCs.

Similar content being viewed by others

References

  1. Brandes RP. Endothelial dysfunction and hypertension. Hypertension. 2014;64:924–8.

    Article  CAS  Google Scholar 

  2. Luo S, Xia W, Chen C, Robinson EA, Tao J. Endothelial progenitor cells and hypertension: current concepts and future implications. Clin Sci. 2016;130:2029–42.

    Article  CAS  Google Scholar 

  3. Hristov M, Erl W, Weber PC. Endothelial progenitor cells. Arterioscler, Thromb, Vasc Biol. 2003;23:1185–9.

    Article  CAS  Google Scholar 

  4. Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvàth T, et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension. Hypertension. 2010;55:1389–97.

    Article  CAS  Google Scholar 

  5. Zhang X, Su C, Cao Z, Xu S, Xia W, Xie W, et al. CXCR7 upregulation is required for early endothelial progenitor cell–mediated endothelial repair in patients with hypertension. Hypertension. 2014;63:383–9.

    Article  CAS  Google Scholar 

  6. Liu X, Zhang G, Zhang X, Xia W, Yang Z, Su C, et al. Lacidipine improves endothelial repair capacity of endothelial progenitor cells from patients with essential hypertension. Int J Cardiol. 2013;168:3317–26.

    Article  Google Scholar 

  7. Rowe GC, Jiang A, Arany Z. PGC-1 coactivators in cardiac development and disease. Circ Res. 2010;107:825–38.

    Article  CAS  Google Scholar 

  8. Valle I, Alvarezbarrientos A, Arza E, Lamas S, Monsalve M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66:562–73.

    Article  CAS  Google Scholar 

  9. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173:74–89.

    Article  CAS  Google Scholar 

  10. Zhang Y, Wang C, Jin Y, Yang Q, Meng Q, Liu Q, et al. Activating the PGC-1α/TERT pathway by catalpol ameliorates atherosclerosis via modulating ROS production, DNA damage, and telomere function: implications on mitochondria and telomere link. Oxid Med Cell Longev. 2018;2018:1–16.

    Google Scholar 

  11. Kadlec AO, Chabowski DS, Ait-Aissa K, Gutterman DD. Role of PGC-1α in vascular regulation. Arterioscler, Thromb, Vasc Biol. 2016;36:1467–74.

    Article  CAS  Google Scholar 

  12. Shimba Y, Togawa H, Senoo N, Ikeda M, Miyoshi N, Morita A, et al. Skeletal muscle-specific PGC-1α overexpression suppresses atherosclerosis in apolipoprotein E-knockout mice. Sci Rep. 2019;9:4077.

  13. Xiong S, Patrushev N, Forouzandeh F, Hilenski L, Alexander RW. PGC-1α modulates telomere function and DNA damage in protecting against aging-related chronic diseases. Cell Rep. 2015;12:1391–9.

    Article  CAS  Google Scholar 

  14. Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, et al. PGC-1α (peroxisome proliferator–activated receptor γ coactivator 1-α) overexpression in coronary artery disease recruits no and hydrogen peroxide during flow-mediated dilation and protects against increased intraluminal pressure. Hypertension. 2017;70:166–73.

    Article  CAS  Google Scholar 

  15. Xiong S, Salazar G, Patrushev N, Ma M, Forouzandeh F, Hilenski L, et al. Peroxisome proliferator-activated receptor γ coactivator-1α is a central negative regulator of vascular senescence. Arterioscler, Thromb, Vasc Biol. 2013;33:988–98.

    Article  CAS  Google Scholar 

  16. Chen L, Ding M, Wu F, He W, Li J, Zhang X, et al. Impaired endothelial repair capacity of early endothelial progenitor cells in hypertensive patients with primary hyperaldosteronemia. Hypertension. 2016;67:430–9.

    Article  CAS  Google Scholar 

  17. Xia W, Chen L, Liang J, Zhang X, Su C, Tong X, et al. BMP4/Id2 signaling pathway is a novel therapeutic target for late outgrowth endothelial progenitor cell-mediated endothelial injury repair. Int J Cardiol. 2017;228:796–804.

    Article  Google Scholar 

  18. Tsai T, Lee C, Cheng C, Fang Y, Chung S, Chen S, et al. Liraglutide inhibits endothelial-to-mesenchymal transition and attenuates neointima formation after endovascular injury in streptozotocin-induced diabetic mice. Cells-Basel. 2019;8:589.

    Article  CAS  Google Scholar 

  19. Sharma J, Johnston MV, Hossain MA. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci. 2014;15:9.

    Article  Google Scholar 

  20. Kröller-Schön S, Jansen T, Schüler A, Oelze M, Wenzel P, Hausding M, et al. Peroxisome proliferator-activated receptor γ, coactivator 1α deletion induces angiotensin II–associated vascular dysfunction by increasing mitochondrial oxidative stress and vascular inflammation. Arterioscler, Thromb, Vasc Biol. 2013;33:1928–35.

    Article  Google Scholar 

  21. Patten IS, Arany Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab. 2012;23:90–7.

    Article  CAS  Google Scholar 

  22. Zhao Q, Zhang J, Wang H. PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice. Biosci Rep. 2015;35:e00217.

    Article  Google Scholar 

  23. Lee G, Uddin MJ, Kim Y, Ko M, Yu I, Ha H. PGC-1A, a potential therapeutic target against kidney aging. Aging Cell. 2019;18:1–19.

    Article  Google Scholar 

  24. Yu B, Huo L, Liu Y, Deng P, Szymanski J, Li J, et al. PGC-1α controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell. 2018;23:193–209.

    Article  CAS  Google Scholar 

  25. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell. 2014;157:882–96.

    Article  CAS  Google Scholar 

  26. Vasileiou PVS, Evangelou K, Vlasis K, Fildisis G, Panayiotidis MI, Chronopoulos E, et al. Mitochondrial homeostasis and cellular senescence. Cells. 2019;8:686.

    Article  CAS  Google Scholar 

  27. He J, Liu X, Su C, Wu F, Sun J, Zhang J, et al. Inhibition of mitochondrial oxidative damage improves reendothelialization capacity of endothelial progenitor cells via SIRT3 (Sirtuin 3)-enhanced SOD2 (Superoxide Dismutase 2) deacetylation in hypertension. Arterioscler, Thromb, Vasc Biol. 2019;39:1682–98.

    Article  CAS  Google Scholar 

  28. Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle. 2015;5.

  29. Sawada N, Jiang A, Takizawa F, Safdar A, Manika A, Tesmenitsky Y, et al. Endothelial PGC-1α mediates vascular dysfunction in diabetes. Cell Metab. 2014;19:246–58.

    Article  CAS  Google Scholar 

  30. Zhao Q, Zhang J, Wang H. PGC-1 limits angiotensin II-induced rat vascular smooth muscle cells proliferation via attenuating NOX1-mediated generation of reactive oxygen species. Biosci Rep. 2015;35:e252.

    Google Scholar 

  31. García-Quintans N, Prieto I, Sánchez-Ramos C, Luque A, Arza E, Olmos Y, et al. Regulation of endothelial dynamics by PGC-1α relies On ROS control of VEGF—a signaling. Free Radic Bio Med. 2016;93:41–51.

    Article  Google Scholar 

  32. Chen D, Xia Y, Zuo K, Wang Y, Zhang S, Kuang D, et al. Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration. Sci Rep. 2015;5:16813.

    Article  CAS  Google Scholar 

  33. Dai X, Tan Y, Cai S, Xiong X, Wang L, Ye Q, et al. The role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. J Cell Mol Med. 2011;15:1299–309.

    Article  CAS  Google Scholar 

  34. He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, et al. Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler, Thromb, Vasc Biol. 2004;24:2021–7.

    Article  CAS  Google Scholar 

  35. Dernbach E. Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 2004;104:3591–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported financially by the National Nature Science Foundation (31530023, 81500205) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Liu or Jun Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Wu, F., He, J. et al. PGC-1α gene transfer restores adhesion and reendothelialization of endothelial progenitor cells from patients with hypertension. J Hum Hypertens 35, 510–516 (2021). https://doi.org/10.1038/s41371-020-0364-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-0364-y

Search

Quick links