Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomarkers levels and brachial and central blood pressure during the subacute phase of lacunar stroke and other ischemic stroke subtypes

Abstract

We aimed to evaluate brachial and central blood pressure (BP) estimates and biomarker levels in lacunar ischemic stroke (IS) and other IS subtypes (nonlacunar stroke). We studied 70 functionally independent subjects consecutively admitted to our institution after a first episode of IS. Subjects with previous heart failure were excluded. BP was measured at admission and during the subacute phase of stroke (5–7 days after stroke onset). Aortic pulse wave velocity (aPWV), augmentation index (AIx), and 24 h brachial and central BP (24h-ABPM) were measured by means of a Mobil-O-Graph device during the subacute phase of stroke. Determination of N-terminal prohormone of brain natriuretic peptide (NT-proBNP), urinary albumin excretion, and echocardiography were performed in all subjects. After adjusting for age and clinical severity, lacunar IS had significantly higher levels of BP at admission (systolic BP 173 ± 37 vs 153 ± 28 mmHg, p = 0.006; diastolic BP: 97 ± 21 vs 86 ± 16 mmHg, p = 0.035) and during the subacute phase of stroke (systolic BP 152 ± 23 vs 134 ± 19 mmHg, p = 0.001; diastolic BP: 84 ± 14 and 77 ± 10 mmHg, respectively; p = 0.038) but lower NT-proBNP levels (median: 36,277 vs 274 pg/mL, p = 0.009) than nonlacunar IS. Central BP, aPWV, and AIx were not different between lacunar and nonlacunar IS, neither the rate of target organ damage. In conclusion, patients with a first episode of lacunar IS have higher BP values at admission and during the subacute phase of stroke and lower levels of NT-proBNP, suggesting a closer relationship with hypertension of this IS subtype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Georgianou E, Georgianos PI, Petidis K, Athyros VG, Serafidis PA, Karagiannis A. Antihypertensive therapy in acute ischemic stroke: where do we stand? J Hum Hypertens. 2018;32:799–807.

    Article  Google Scholar 

  2. Armario P, Martin-Baranera M, Ceresuela LM, Hernández-del-Rey R, Iribarnegaray E, Pintado S, et al. Blood pressure in the initial phase of acute stroke: evolution and its role as an independent prognosis factors at discharge and after 3 months of follow-up. Blood Press. 2008;17:284–90.

    Article  Google Scholar 

  3. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. on behalf of the American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemis stroke. A guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:e46–e110. https://doi.org/10.1161/STR.0000000000000158.

    Article  PubMed  Google Scholar 

  4. Vemmos KN, Spengos K, Tsivgoulis G, Zakapoulus N, Manios E, Kotsis V, et al. Factors influencing acute blood pressure values in stroke subtypes. J Hum Hypertens. 2004;28:253–9.

    Article  Google Scholar 

  5. Altmann M, Thommessen B, Ronning OM, Reichbach AS, Fure B. Blood pressure differences between patients with lacunar and non lacunar infarcts. Brain Behav. https://doi.org/10.1002/brb3.353.

    Article  Google Scholar 

  6. Wardlaw JM, Doubal F, Armitage P, Chappell F, Carpenter T, Muñoz Maniega S, et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol. 2009;65:194–202.

    Article  Google Scholar 

  7. Wardlaw JM. What causes lacunar stroke? J Neurol Neurosurg Psychiatry. 2005;76:617–9.

    Article  CAS  Google Scholar 

  8. Sico JJ, Phipps MS, Yaggi HK, Burrus N, Ferguson J, McClain V, et al. Ambulatory blood pressure monitoring among patients with cerebrovascular disease. Blood Press Monit. 2011;16:211–7.

    Article  Google Scholar 

  9. Castilla-Guerra L, Fernández-Moreno MC. Ambulatory blood pressure monitoring in stroke survivors: do we really control our patients? Eur J Intern Med. 2009;20:760–3.

    Article  Google Scholar 

  10. Castilla-Guerra L, Fernández-Moreno MC. Chronic management of hypertension after stroke: the role of ambulatory blood pressure monitoring. J Stroke. 2016;18:31–37.

    Article  Google Scholar 

  11. Jain S, Namboodri KKN, Kumari S, Prabhakar S. Loss of circadian rhythm of blood pressure following acute stroke. BMC Neurol. 2004;4:1–6.

    Article  CAS  Google Scholar 

  12. Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulus N, Stergiou GS. Association of central versus brachial blood pressure with target organ damage. Syst Rev Meta-Anal Hypertens. 2016;67:183–90.

    CAS  Google Scholar 

  13. Llombart V, Antolin-Fontes A, Bustamante A, Giralt D, Rost NS, Furie K, et al. B-type natriuretic peptides help in cardioembolic stroke diagnosis. Pool data meta-Anal Stroke. 2015;46:1187–95.

    CAS  Google Scholar 

  14. Greisenegger S, Segal HC, Burges AI, Poole DL, Mehta Z, Rotwell PM. Biomarkers and mortality after transient ischemic attack and minor ischemicstroke. Population-based study. Stroke. 2015;46:659–66.

    Article  CAS  Google Scholar 

  15. Kawase S, Kowa H, Suto Y, Fukuda H, Kusumi M, Nakayasu H, et al. Plama brain natriuretic peptide is a marker of prognostic functional outcome in non-cardioembolic infarction. J Stroke Cererbrovasc Dis. 2015;24:2285–90.

    Article  Google Scholar 

  16. Gao M, Ma G, Ding W, Mu L. Copeptina and NT-proBNP as prognostic markers for recurrent ischemic cerebrovascular events in ischemic stroke patients. J Am Coll Cardiol. 2016;68:2710–1.

    Article  Google Scholar 

  17. O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension Working Group on blood pressure monitoring. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31:1731–68.

    Article  Google Scholar 

  18. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359–66.

    Article  CAS  Google Scholar 

  19. Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometrtic estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18:173–6.

    Article  Google Scholar 

  20. Weber T, Wassertheurer S, Hametner B, Parragh S, Eber B. Noninvasive methods to assess pulse wave velocity. J Hypertens. 2015;33:1023–31.

    Article  CAS  Google Scholar 

  21. Blanch P, Armario P, Oliveras A, Fernández-Llama P, Vázquez S, Calero F, et al. Association of left ventricular hypertrophy or diastolic dysfunction with 24-hour central and peripheral blood pressure. Am J Hypertens. 2018;31:1293–9.

    Article  CAS  Google Scholar 

  22. Marwick TH, Gillebert TC, Aurigemma G, Chirinos J, Derumeaux G, Galderisi M, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of cardiovascular imaging (EACVI) and the American Society of Echocardiography (ASE). J Am Soc Echocardiogr. 2015;28:727–54.

    Article  Google Scholar 

  23. Devereux RB, Alonso DR, Lutas EM, Gottlieb CJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    Article  CAS  Google Scholar 

  24. Fernández-Llama P, Pareja J, Yun S, Vázquez S, Oliveras A, Armario P, et al. Cuff-based oscillometric central and brachial blood pressures obtained through ABPM are similarly associated with renal organ damage in arterial hypertension. Kidney Blood Press Res. 2017;42:1068–77.

    Article  Google Scholar 

  25. Lau KK, Li L, Simoni M, Mehta Z, Küker W, Rothwell PM. for the Oxford Vascular Study. Long-term premorbid blood pressure and cerebral small vessel disease burden on imaging in transient ischemic attack and ischemic stroke. Population-based study. Stroke. 2018;49:2053–60.

    Article  Google Scholar 

  26. Klarenbeek P, Van Oostenbrugge J, Rouhl RPW, Knottnerus ILH, Staals J. Ambulatory blood pressure in patients with lacunar stroke. Association with total MRI burden of cerebral small vessel disease. Stroke. 2013;44:2995–9.

    Article  Google Scholar 

  27. Yan B, Peng L, Dong Q, Zheng F, Yang P, Sun L, et al. Reverse-dipper pattern of blood pressure may predict lacunar infarction in patients with essential hypertension. Eur J Neurol. 2015;22:1022–5.

    Article  CAS  Google Scholar 

  28. Zhang WW, Cadilac DA, Churilov L, Donnan GA, O’Callaghan C, Dewey HM. Does abnormal circadian blood pressure pattern really matter in patients with transient ischemic attack or minor stroke? Stroke. 2014;45:865–7.

    Article  CAS  Google Scholar 

  29. Yamamoto Y, Akiguchi I, Oiwa K, Hayashi M, Kimura J. Adverse effect of night-time blood pressure on the outcome of lacunar infarct patients. Stroke. 1998;29:570–6.

    Article  CAS  Google Scholar 

  30. Yamamoto Y, Akiguchi I, Oiwa K, Hayashi M, Kasai T, Ozasa K. Twenty-four-hour blood pressure and MRI as predictive factors for different outcomes in patients with lacunar infarct. Stroke. 2002;33:297–305.

    Article  CAS  Google Scholar 

  31. Weber T, Wassertheurer S, Schmidt-Truckäss A, Rodilla E, Ablaser C, Jankowski P, et al. Relationship between 24.hour ambulatory central systolic blood pressure and left ventricular mass. A prospective multicenter study. Hypertension. 2017;70:1157–64.

    Article  CAS  Google Scholar 

  32. Henskens LHG, Kroon AA, Oostenbrugge Van, HBM Gronenschild, MMJJ Fuss-Lejeune, Hofman PAM, et al. Increased aortic pulse wave velocity is associated with silent cerebral small-vessel disease in hypertensive patients. Hypertension. 2008;52:1120–6.

    Article  CAS  Google Scholar 

  33. Gasecki D, Kwarciany M, Kowalczyk K, Rojerj A, Nowicki T, Skrzypek-Czerco M, et al. Aortic stiffness is an independent biomarker of subclinical brain damage in acute ischemic stroke. J Hypertens. 2015;33. https://doi.org/10.1097/01.hjh.0000467502.75589.a8.

    Article  Google Scholar 

  34. Byun DS, Han SW, Park JH, Kim JY, Baik JS, Park JH. Relationship between augmentation index and acute ischemic stroke subtype. J Clin Neuroscience. 2014;21:1220–4.

    Article  Google Scholar 

  35. Di Castelnuovo A, Veronesi G, Constanzo S, Zeller T, Schnabel RB, de Curtis A, et al. On behalf of the BiomarCARE Investigators. Stroke. 2019. https://doi.org/10.1161/STROKEAHA.118.023218.

    Article  CAS  Google Scholar 

  36. Heuschmann PU, Kircher J, Nowe T, Dittich R, Reiner Z, Cifkova R, et al. Control of main risk factors after stroke across Europe: data from the stroke-specific module of the EUROASPIRE III survey. Eur J Prev Cardiol. 2015;22:1354–62.

    Article  Google Scholar 

  37. Kohok DD, Sico JJ, Baye F, Myers L, Coffing J, Kamalesh M, et al. Post-stroke hypertension control and receipt of healthy care services among veterans. J Clin Hypertens. 2018;20:382–87.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kathryn O’Connor for reviewing the manuscript. The current study was supported by a grant of the Catalan Society of Hypertension.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gómez-Choco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Choco, M., García-Sánchez, S.M., Font, M.À. et al. Biomarkers levels and brachial and central blood pressure during the subacute phase of lacunar stroke and other ischemic stroke subtypes. J Hum Hypertens 34, 404–410 (2020). https://doi.org/10.1038/s41371-019-0233-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-019-0233-8

Search

Quick links