Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increasing ambulatory pulse pressure predicts the development of left ventricular hypertrophy during long-term follow-up

Abstract

Ambulatory blood pressure (ABP) has been shown to have an association with left ventricular hypertrophy (LVH). We evaluated the association between ABP characteristics and the development of LVH during long-term follow-up (20 years) in 420 middle-aged subjects from OPERA cohort. ABP measurements (ABPM) were recorded and echocardiographic examinations were performed at baseline and revisit. Anthropometrics were measured and laboratory analyses performed at visit. The questionnaire presented to all participants elicited detailed information about their habits. Left ventricular mass index (LVMI) was calculated according to Troys method. Baseline LVMI was a significant independent predictor of LVMI change (p < 0.001). None of the baseline continuous ABPM predicted the change in LVMI. A greater increase in daytime and night-time systolic blood pressure (BP) (p from 0.006 to 0.048) and 24 h, daytime and night-time pulse pressure (PP) (p from 0.005 to 0.034) predicted a greater increase in LVMI. Especially the increase in night-time SBP (p = 0.006) and PP (p = 0.005) predicted a greater increase in LVMI. We also considered circadian BP profiles among subjects, whose ABPM at baseline and echocardiographic measurements both at baseline and follow-up were available. Diastolic non-dippers were observed to show a greater increase in LVMI compared to diastolic dippers (10.6 ± 33.0 g/m2 vs. 7.0 ± 28.8 g/m2, p = 0.032), when baseline LVMI and in-office DBP were taken account. These findings suggest that an increasing ambulatory PP increases and a diastolic non-dipping status may increase the risk for the development of LVH during later life course.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Catalá-López F, García-Altés A, Alvarez-Martín E, Gènova-Maleras R, Morant-Ginestar C, Parada A. Burden of disease and economic evaluation of healthcare interventions: are we investigating what really matters? BMC Health Serv Res. 2011;11:75.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Castelli WP. Epidemiology of coronary heart disease: the Framingham study. Am J Med. 1984;76(2A):4–12.

    Article  CAS  PubMed  Google Scholar 

  3. Manyari DE. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;323:1706–7.

    Article  CAS  PubMed  Google Scholar 

  4. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105:173–8.

    Article  CAS  PubMed  Google Scholar 

  5. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  6. Verdecchia P. Prognostic value of ambulatory blood pressure: current evidence and clinical implications. Hypertension. 2000;35:844–51.

    Article  CAS  PubMed  Google Scholar 

  7. Head GA, Mihailidou AS, Duggan KA, Beilin LJ, Berry N, Brown MA, et al. Ambulatory Blood Pressure Working Group of the High Blood Pressure Research Council of Australia. Definition of ambulatory blood pressure targets for diagnosis and treatment of hypertension in relation to clinic blood pressure: prospective cohort study. BMJ. 2010;340:c1104.

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Brien E. Twenty-four-hour ambulatory blood pressure measurement in clinical practice and research: a critical review of a technique in need of implementation. J Intern Med. 2011;269:478–95.

    Article  PubMed  Google Scholar 

  9. Feola M, Boffano GM, Procopio M, Reynaud S, Allemano P, Rizzi G. Ambulatory 24-hour blood pressure monitoring: correlation between blood pressure variability and left ventricular hypertrophy in untreated hypertensive patients. G Ital Cardiol. 1998;28:38–44.

    CAS  PubMed  Google Scholar 

  10. Den Hond E, Staessen JA, APTH investigators; THOP investigators. Relation between left ventricular mass and systolic blood pressure at baseline in the APTH and THOP trials. Blood Press Monit. 2003;8:173–5.

    Article  Google Scholar 

  11. Rowlands DB, Ireland MA, Glover DR, McLeay RA, Stallard TJ, Littler WA. The relationship between ambulatory blood pressure and echocardiographically assessed left ventricular hypertrophy. Clin Sci. 1981;61(Suppl 7):101s–3s.

    Article  PubMed  Google Scholar 

  12. Ozawa M, Tamura K, Okano Y, Matsushita K, Ikeya Y, Masuda S, et al. Blood pressure variability as well as blood pressure level is important for left ventricular hypertrophy and brachial-ankle pulse wave velocity in hypertensives. Clin Exp Hypertens. 2009;31:669–79.

    Article  CAS  PubMed  Google Scholar 

  13. Devereux RB, Pickering TG, Harshfield GA, Kleinert HD, Denby L, Clark L, et al. Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. Circulation. 1983;68:470–6.

    Article  CAS  PubMed  Google Scholar 

  14. Henskens LH, Kroon AA, van Oostenbrugge RJ, Haest RJ, Lodder J, de Leeuw PW. Different classifications of nocturnal blood pressure dipping affect the prevalence of dippers and nondippers and the relation with target-organ damage. J Hypertens. 2008;26:691–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yano Y, Kario K. Nocturnal blood pressure and cardiovascular disease: a review of recent advances. Hypertens Res. 2012;35:695–701.

    Article  PubMed  Google Scholar 

  16. Staessen JA, Bieniaszewski L, O’Brien E, Gosse P, Hayashi H, Imai Y, et al. Nocturnal blood pressure fall on ambulatory monitoring in a large international database. The “Ad Hoc’ Working Group. Hypertension. 1997;29(1 Pt 1):30–9.

    Article  CAS  PubMed  Google Scholar 

  17. Balci B, Yilmaz O, Yesildag O. The influence of ambulatory blood pressure profile on left ventricular geometry. Echocardiography. 2004;21:7–10.

    Article  PubMed  Google Scholar 

  18. Cuspidi C, Giudici V, Negri F, Sala C. Nocturnal nondipping and left ventricular hypertrophy in hypertension: an updated review. Expert Rev Cardiovasc Ther. 2010;8:781–92.

    Article  PubMed  Google Scholar 

  19. Andrikou I, Tsioufis C, Thomopoulos C, Kasiakogias A, Dimitriadis K, Andrikou E, et al. Nighttime vs. daytime blood pressure as a predictor of changes in left ventricular mass in hypertensive subjects. Hypertens Res. 2013;36:967–71.

    Article  PubMed  Google Scholar 

  20. Khattar RS, Senior R, Swales JD, Lahiri A. Value of ambulatory intra-arterial blood pressure monitoring in the long-term prediction of left ventricular hypertrophy and carotid atherosclerosis in essential hypertension. J Hum Hypertens. 1999;13:111–6.

    Article  CAS  PubMed  Google Scholar 

  21. Cuspidi C, Facchetti R, Bombelli M, Sala C, Negri F, Grassi G, et al. Nighttime blood pressure and new-onset left ventricular hypertrophy: findings from the Pamela population. Hypertension. 2013;62:78–84.

    Article  CAS  PubMed  Google Scholar 

  22. Jokiniitty JM, Majahalme SK, Kähönen MA, Tuomisto MT, Turjanmaa VM. Pulse pressure is the best predictor of future left ventricular mass and change in left ventricular mass: 10 years of follow-up. J Hypertens. 2001;19:2047–54.

    Article  CAS  PubMed  Google Scholar 

  23. Rantala AO, Kauma H, Lilja M, Savolainen MJ, Reunanen A, Kesäniemi YA. Prevalence of the metabolic syndrome in drug-treated hypertensive patients and control subjects. J Intern Med. 1999;245:163–74.

    Article  CAS  PubMed  Google Scholar 

  24. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5:303–11.

    PubMed  Google Scholar 

  25. O’Brien E, Coats A, Owens P, Petrie J, Padfield PL, Littler WA, et al. Use and interpretation of ambulatory blood pressure monitoring: recommendations of the British hypertension society. BMJ. 2000;320:1128–34. Review

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ylitalo A. Cardiovascular autonomic regulation in systemic hypertension. PhD Thesis, University of Oulu, Oulu, 1999.

  27. Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit. 2007;12:113–7.

    Article  PubMed  Google Scholar 

  28. Kervinen K, Savolainen MJ, Salokannel J, Hynninen A, Heikkinen J, Ehnholm C, et al. Apolipoprotein E and B polymorphisms—longevity factors assessed in nonagenarians. Atherosclerosis. 1994;105:89–95.

    Article  CAS  PubMed  Google Scholar 

  29. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–71.

    Article  PubMed  Google Scholar 

  30. Troy BL, Pombo J, Rackley CE. Measurement of left ventricular wall thickness and mass by echocardiography. Circulation. 1972;45:602–11.

    Article  CAS  PubMed  Google Scholar 

  31. Emoto M, Nishizawa Y, Kawagishi T, Maekawa K, Hiura Y, Kanda H, et al. Stiffness indexes beta of the common carotid and femoral arteries are associated with insulin resistance in NIDDM. Diabetes Care. 1998;21:1178–82.

    Article  CAS  PubMed  Google Scholar 

  32. Vaziri SM, Larson MG, Lauer MS, Benjamin EJ, Levy D. Influence of blood pressure on left atrial size. The Framingham Heart Study. Hypertension. 1995;25:1155–60.

    Article  CAS  PubMed  Google Scholar 

  33. Boutouyrie P, Laurent S, Girerd X, Benetos A, Lacolley P, Abergel E, et al. Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension. 1995;25:651–9.

    Article  CAS  PubMed  Google Scholar 

  34. Foppa M, Duncan BB, Rohde LE. Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc Ultrasound. 2005;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cuspidi C, Meani S, Salerno M, Valerio C, Fusi V, Severgnini B, et al. Reproducibility of nocturnal blood pressure fall in early phases of untreated essential hypertension: a prospective observational study. J Hum Hypertens. 2004;18:503–9.

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Lloret S, Toblli JE, Cardinali DP, Malateste JC, Milei J. Nocturnal hypertension defined by fixed cut-off limits is a better predictor of left ventricular hypertrophy than non-dipping. Int J Cardiol. 2008;127:387–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the excellent technical assistance of Mrs Saija Kortetjärvi and Mrs Heidi Häikiö. This study was supported by the Finnish Foundation for Cardiovascular Research.

Funding

The study is supported by a grant from the Finnish Foundation for Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero J. W. Pääkkö.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pääkkö, T.J.W., Perkiömäki, J.S., Kesäniemi, Y.A. et al. Increasing ambulatory pulse pressure predicts the development of left ventricular hypertrophy during long-term follow-up. J Hum Hypertens 32, 180–189 (2018). https://doi.org/10.1038/s41371-018-0034-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0034-5

Search

Quick links