Taste and the Gastrointestinal tract: from physiology to potential therapeutic target for obesity

Article metrics

Abstract

Flavor is the combination of gustatory, olfactory and trigeminal sensations, representing the three main sensory pathways that allow detecting environmental chemical substances. Taste, in particular, is a complex chemosensory path that allows identification of substances present in ingested foods and beverages. In this manuscript, we propose a conceptual roadmap from aspects related to the evolution and the physiological role of taste, up to the current knowledge about its implication in the modulation of a healthy state, or obesity. More specifically, we focused on the role of stimulation of taste receptors in releasing gut hormones (also known as enterohormones), and their effects on the regulation of food intake, by inducing satiety, either by locally acting (in the gastrointestinal tract), or centrally (in the brain). Recent evidence demonstrated that some enterohormones are able to modulate gastrointestinal motility, thus affecting an orexigenic responses in the central nervous system. In keeping with this, we discuss the ability of the gustatory system to be a final checkpoint control for food intake regulation, and we speculate about taste perception manipulation in the management of obesity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, et al. The taste of carbonation. Science. 2009;326:443–5.

  2. 2.

    Di Salle F, Cantone E, Savarese MF, Aragri A, Prinster A, Nicolai E, et al. Effect of carbonation on brain processing of sweet stimuli in humans. Gastroenterology. 2013;145:537–9.

  3. 3.

    Yamamoto K, Ishimaru Y. Oral and extra-oral taste perception. Semin Cell Dev Biol. 2013;24:240–6.

  4. 4.

    Lu P, Zhang CH, Lifshitz LM, ZhuGe R. Extraoral bitter taste receptors in health and disease. J Gen Physiol. 2017;149:181–97.

  5. 5.

    Han H, Kwon H. Estimated dietary intake of thiocyanate from Brassicaceae family in Korean diet. J Toxicol Environ Health A. 2009;72:1380–7.

  6. 6.

    Haase L, Green E, Murphy C. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite. 2011;57:421–34.

  7. 7.

    Nahab F, Le A, Judd S, Frankel MR, Ard J, Newby PK, et al. 2011. Racial and geographic differences in fish consumption: the REGARDS study. Neurology. 2011;76:154–8.

  8. 8.

    Heft MW, Robinson ME. Age differences in orofacial sensory thresholds. J Dent Res. 2010;89:1102–5.

  9. 9.

    Nicklaus S, Boggio V, Chabanet C, Issanchou S. A prospective study of food variety seeking in childhood, adolescence and early adult life. Appetite. 2005;44:289–97.

  10. 10.

    Guo SW, Reed DR. The genetics of phenylthiocarbamide perception. Ann Hum Biol. 2001;28:111–42.

  11. 11.

    Dinehart ME, Hayes JE, Bartoshuk LM, Lanier SL, Duffy VB. Bitter taste markers explain variability in vegetable sweetness, bitterness, and intake. PhysiolBehav. 2006;87:304–13.

  12. 12.

    Tepper BJ, Williams TZ, Burgess JR, Antalis CJ, Mattes RD. Genetic variation in bitter taste and plasma markers of anti-oxidant status in college women. Int J Food SciNutr. 2009;60(Suppl2):35–45.

  13. 13.

    Bartoshuk LM, Duffy VB, Miller IJ. PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiol Behav. 1994;56:1165–71.

  14. 14.

    Teff KL. Cephalic phase pancreatic polypeptide responses to liquid and solid stimuli in humans. Physiol Behav. 2010;99:317–23.

  15. 15.

    Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A. Genetic variation in taste and its influence on food selection. OMICS. 2009;13:69–80.

  16. 16.

    Salbe AD, DelParigi A, Pratley RE, Drewnowski A, Tataranni PA. Taste preferences and body weight changes in an obesity-prone population. Am J ClinNutr. 2004;79:372–8.

  17. 17.

    Tepper BJ, Koelliker Y, Zhao L, Ullrich NV, Lanzara C, d’Adamo P, et al. Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. Obesity. 2008;16:2289–95.

  18. 18.

    Skrandies W, Zschieschang R. Olfactory and gustatory functions and its relation to body weight. Physiol Behav. 2015;142:1–4.

  19. 19.

    Eny KM, Wolever TM, Corey PN, El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J ClinNutr. 2010;92:1501–10.

  20. 20.

    Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ. Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos Trans R SocLond B Biol Sci. 2006;361:1137–48.

  21. 21.

    Bartoshuk LM, Catalanotto F, Hoffman H, Logan H, Snyder DJ. Taste damage (otitis media, tonsillectomy and head and neck cancer), oral sensations and BMI. PhysiolBehav. 2012;107:516–26.

  22. 22.

    Tepper BJ, Ullrich NV. Influence of genetic taste sensitivity to 6-n-propylthiouracil (PROP), dietary restraint and disinhibition on body mass index in middle-aged women. PhysiolBehav. 2002;75:305–12.

  23. 23.

    Goldstein GL, Daun H, Tepper BJ. Adiposity in middle-age women is associated with genetic taste blindness to 6-n-propylthiouracil. Obes Res. 2005;13:1017–23.

  24. 24.

    Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev GastroenterolHepatol. 2013;10:729–40.

  25. 25.

    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100:693–702.

  26. 26.

    Finger TE, Kinnamon SC. Taste isn’t just for taste buds anymore. F1000 Biol Rep. 2011;3:20.

  27. 27.

    Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Recent advances in basic science. Gut. 2014;63:179–90.

  28. 28.

    Höfer D, Püschel B, Drenckhahn D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA. 1996;93:6631–4.

  29. 29.

    Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA. 2002;99:2392–7.

  30. 30.

    Gerbe F, Legraverend C, Jay P. The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci. 2012;69:2907–17.

  31. 31.

    Janssen S, Depoortere I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol Metab. 2013;24:92–100.

  32. 32.

    Lee AA, Owyang C. Sugar, sweet taste receptors, and brain responses. Nutrients. 2017; 9: pii: E653.

  33. 33.

    Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97:411–63.

  34. 34.

    Steensels S, Depoortere I. Chemoreceptors in the gut. Annu Rev Physiol. 2018;80:117–41.

  35. 35.

    Hass N, Schwarzenbacher K, Breer H. A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct populations of enteroendocrine cells. Histochem Cell Biol. 2007;128:457–71.

  36. 36.

    Ekstrand B, Young JF, Rasmussen MK. Taste receptors in the gut - a new target for health promoting properties in diet. Food Res Int. 2017;100:1–8.

  37. 37.

    Daly K, Al-Rammahi M, Arora DK, Moran AW, Proudman CJ, Ninomiya Y, et al. Expression of sweet receptor components in equine small intestine: relevance to intestinal glucose transport. Am J Physiol Regul Integr Comp Physiol. 2012;303:R199–208.

  38. 38.

    Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, et al. Bitter taste receptors influence glucose homeostasis. PLoS ONE. 2008;3:e3974.

  39. 39.

    Barrea L, Annunziata G, Muscogiuri G, Arnone A, Tenore GC, Colao A et al. Could hop-derived bitter compounds improve glucose homeostasis by stimulating the secretion of GLP-1? Crit Rev Food Sci Nutr. 2017; https://doi.org/10.1080/10408398.2017.1378168.

  40. 40.

    Prandi S, Bromke M, Hübner S, Voigt A, Boehm U, Meyerhof W, et al. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS ONE. 2013;8:e82820.

  41. 41.

    Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A. Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am J Physiol Gastrointest Liver Physiol. 2009;296:G971–981.

  42. 42.

    Janssen S, Laermans J, Verhulst P, Thijs T, Tack J, Depoortere I. Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA. 2011;108:2094–9.

  43. 43.

    Li J, Xu J, Hou R, Jin X, Wang J, Yang N, et al. Qing-Hua Granule induces GLP-1 secretion via bitter taste receptor in db/db mice. Biomed Pharmacother. 2017;89:10–17.

  44. 44.

    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.

  45. 45.

    Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.

  46. 46.

    Tack J, Depoortere I, Bisschops R, Delporte C, Coulie B, Meulemans A, et al. Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut. 2006;55:327–33.

  47. 47.

    Tack J, Depoortere I, Bisschops R, Verbeke K, Janssens J, Peeters T. Influence of ghrelin on gastric emptying and meal-related symptoms in idiopathic gastroparesis. Aliment Pharmacol Ther. 2005;22:847–53.

  48. 48.

    Pham H, Hui H, Morvaridi S, Cai J, Zhang S, Tan J, et al. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells. Biochem Biophys Res Commun. 2016;475:295–300.

  49. 49.

    Steinert RE, Beglinger C, Langhans W. Intestinal GLP-1 and satiation: from man to rodents and back. Int J Obes. 2016;40:198–205.

  50. 50.

    Zanchi D, Depoorter A, Egloff L, Haller S, Mählmann L, Lang UE, et al. The impact of gut hormones on the neural circuit of appetite and satiety: a systematic review. Neurosci Biobehav Rev. 2017;80:457–75.

  51. 51.

    Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA. 2007;104:15069–74.

  52. 52.

    Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na + -glucose cotransporter 1. Proc Natl Acad Sci USA. 2007;104:15075–80.

  53. 53.

    Kokrashvili Z, Mosinger B, Margolskee RF. T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann N Y Acad Sci. 2009;1170:91–94.

  54. 54.

    Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP. Sensing of amino acids by the gutexpressed taste receptor T1R1–T1R3 stimulates CCK secretion. Am J Physiol Gastrointest Liver Physiol. 2013;304:G271–G282.

  55. 55.

    Kokrashvili Z, Mosinger B, Margolskee RF. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J ClinNutr. 2009;90:822S–825S.

  56. 56.

    Geraedts MC, Takahashi T, Vigues S, Markwardt ML, Nkobena A, Cockerham RE, et al. Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am J Physiol Endocrinol Metab. 2012;303:E464–474.

  57. 57.

    Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA. 2004;101:14258–63.

  58. 58.

    Galindo-Cuspinera V, Winnig M, Bufe B, Meyerhof W, Breslin PA. A TAS1R receptor-based explanation of sweet ‘water-taste’. Nature. 2006;441:354–7.

  59. 59.

    Ohtsu Y, Nakagawa Y, Nagasawa M, Takeda S, Arakawa H, Kojima I. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol Cell Endocrinol. 2014;394:70–79.

  60. 60.

    Wang F, Song X, Zhou L, Liang G, Huang F, Jiang G et al. The downregulation of sweet taste receptor signaling in enteroendocrine L-cells mediates 3-deoxyglucosone-induced attenuation of high glucose-stimulated GLP-1 secretion. Arch Physiol Biochem. 2017; https://doi.org/10.1080/13813455.2017.1419366.

  61. 61.

    Murovets VO, Bachmanov AA, Zolotarev VA. Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE. 2015;10:e0130997.

  62. 62.

    Gerspach AC, Steinert RE, Schönenberger L, Graber-Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab. 2011;301:E317–325.

  63. 63.

    Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr. 2011;30:524–32.

  64. 64.

    Shirazi-Beechey SP, Daly K, Al-Rammahi M, Moran AW, Bravo D. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr. 2014;111(Suppl1):S8–15.

  65. 65.

    Glendinning JI, Yiin YM, Ackroff K, Sclafani A. Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol Behav. 2008;93:757–65.

  66. 66.

    Avau B, Rotondo A, Thijs T, Andrews CN, Janssen P, Tack J, et al. Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci Rep. 2015;5:15985.

  67. 67.

    Andreozzi P, Sarnelli G, Pesce M, Zito FP, Alessandro AD, Verlezza V, et al. The bitter taste receptor agonist quinine reduces calorie intake and increases the postprandial release of cholecystokinin in healthy subjects. J Neurogastroenterol Motil. 2015;21:511–9.

  68. 68.

    Tack J, Piessevaux H, Coulie B, Caenepeel P, Janssens J. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology. 1998;115:1346–52.

  69. 69.

    Tack J, Caenepeel P, Piessevaux H, Cuomo R, Janssens J. Assessment of meal induced gastric accommodation by a satiety drinking test in health and in severe functional dyspepsia. Gut. 2003;52:1271–7.

  70. 70.

    Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol. 2006;291:G792–802.

  71. 71.

    Kim KS, Egan JM, Jang HJ. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia. 2014;57:2117–25.

  72. 72.

    Park J, Kim KS, Kim KH, Lee IS, Jeong HS, Kim Y, et al. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochem Biophys Res Commun. 2015;468:306–11.

  73. 73.

    Yu Y, Hao G, Zhang Q, Hua W, Wang M, Zhou W, et al. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem Pharmacol. 2015;97:173–7.

  74. 74.

    Le Nevé B, Foltz M, Daniel H, Gouka R. The steroid glycoside H.g.-12 from Hoodia gordonii activates the human bitter receptor TAS2R14 and induces CCK release from HuTu-80 cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1368–1375.

  75. 75.

    Jeon TI, Zhu B, Larson JL, Osborne TF. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J Clin Invest. 2008;118:3693–3700.

  76. 76.

    Prinster A, Cantone E, Verlezza V, Magliulo M, Sarnelli G, Iengo M, et al. Cortical representation of different taste modalities on the gustatory cortex: a pilot study. PLoS ONE. 2017;12:e0190164.

  77. 77.

    Roitman MF, Wheeler RA, Carelli RM. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron. 2005;45:587–97.

  78. 78.

    Singh N, Vrontakis M, Parkinson F, Chelikani P. Functional bitter taste receptors are expressed in brain cells. Biochem Biophys Res Commun. 2011;406:146–51.

  79. 79.

    Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS. A gustotopic map of taste qualities in the mammalian brain. Science. 2011;333:1262–6.

  80. 80.

    Baskin DG, Breininger JF, Schwartz MW. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes. 1999;48:828–33.

  81. 81.

    Stocker CJ, Cawthorne MA. The influence of leptin on early life programming of obesity. Trends Biotechnol. 2008;26:545–51.

  82. 82.

    Misaka T. Molecular mechanisms of the action of miraculin, a taste-modifying protein. Semin Cell Dev Biol. 2013;24:222–5.

  83. 83.

    Swamy KB, Hadi SA, Sekaran M, Pichika MR. The clinical effects of Synsepalumdulcificum: a review. J Med Food. 2014;17:1165–9.

  84. 84.

    Mennella I, Fogliano V, Ferracane R, Arlorio M, Pattarino F, Vitaglione P. Microencapsulated bitter compounds (from Gentianalutea) reduce daily Energy intakes in humans. Br J Nutr. 2016; https://doi.org/10.1017/S0007114516003858.

Download references

Acknowledgements

Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group members served as collaborators and approved the final version of the manuscript: Annamaria Colao, Antonio Aversa, Barbara Altieri, Luigi Angrisani, Giuseppe Annunziata, Rocco Barazzoni, Luigi Barrea, Giuseppe Bellastella, Bernadette Biondi, Elena Cantone, Brunella Capaldo, Sara Cassarano, Rosario Cuomo, Luigi Di Luigi, Andrea Di Nisio, Carla Di Somma, Ludovico Docimo, Katherine Esposito, Carlo Foresta, Pietro Forestieri, Alessandra Gambineri, Francesco Garifalos, Cristiano Giardiello, Carla Giordano, Francesco Giorgino, Dario Giugliano, Daniela Laudisio, Davide Lauro, Andrea Lenzi, Silvia Magno, Paolo Macchia, MariaIda Maiorino, Emilio Manno, Chiara Marocco, Paolo Marzullo, Chiara Mele, Davide Menafra, Silvia Migliaccio, Marcello Monda, Filomena Morisco, Fabrizio Muratori, Giovanna Muscogiuri, Mario Musella, Gerardo Nardone, Claudia Oriolo, Uberto Pagotto, Pasquale Perrone Filardi, Luigi Piazza, Rosario Pivonello,Barbara Polese, Paolo Pozzilli, Giulia Puliani, Stefano Radellini, Gabriele Riccardi, Domenico Salvatore, Ferruccio Santini, Giovanni Sarnelli, Lorenzo Scappaticcio, Silvia Savastano,Bruno Trimarco, Dario Tuccinardi,Paola Vairano, Nunzia Verde, Roberto Vettor.

Funding Information:

This article is published as part of a supplement funded by Endocrinology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.

Author information

Giovanni Sarnelli and Giuseppe Annunziata contributed equally to this work.

Correspondence to Giovanni Sarnelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group are listed in Acknowledgements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark