Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

Association between gut microbiota at 3.5 years of age and body mass index at 5 years: results from two French nationwide birth cohorts

Abstract

Background/objectives

The relationship between gut microbiota and changes in body mass index (BMI) or pediatric overweight in early life remains unclear, and information regarding the preterm population is scarce. This study aimed to investigate how the gut microbiota at 3.5 years of age is associated with (1) later BMI at 5 years, and (2) BMI z-score variations between 2 and 5 years in children from two French nationwide birth cohorts.

Subjects/methods

Bacterial 16S rRNA gene sequencing was performed to profile the gut microbiota at 3.5 years of age in preterm children (n = 143, EPIPAGE 2 cohort) and late preterm/full-term children (n = 369, ELFE cohort). The predicted abundances of metabolic functions were computed using PICRUSt2. Anthropometric measurements were collected at 2 and 5 years of age during medical examinations or retrieved from children’s health records. Statistical analyses included multivariable linear and logistic regressions, random forest variable selection, and MiRKAT.

Results

The Firmicutes to Bacteroidetes (F/B) ratio at 3.5 years was positively associated with the BMI z-score at 5 years. Several genera were positively ([Eubacterium] hallii group, Fusicatenibacter, and [Eubacterium] ventriosum group) or negatively (Eggerthella, Colidextribacter, and Ruminococcaceae CAG-352) associated with the BMI z-scores at 5 years. Some genera were also associated with variations in the BMI z-scores between 2 and 5 years of age. Predicted metabolic functions, including steroid hormone biosynthesis, biotin metabolism, glycosaminoglycan degradation, and amino sugar and nucleotide sugar metabolism, were associated with lower BMI z-scores at 5 years. The unsaturated fatty acids biosynthesis pathway was associated with higher BMI z-scores.

Conclusions

These findings indicate that the gut microbiota at 3.5 years is associated with later BMI during childhood, independent of preterm or term birth, suggesting that changes in the gut microbiota that may predispose to adult obesity begin in early childhood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut microbiota genera at 3.5 years of age associated with BMI z-score and weight status at 5 years of age.
Fig. 2: KEGG metabolic pathways of 3.5 years gut microbiota associated with BMI z-score and weight status at 5 years of age.

Similar content being viewed by others

Data availability

The data from the ELFE and EPIPAGE 2 cohorts cannot be made publicly available for ethical reasons. They are available upon reasonable request from the authors upon reasonable request and under data-security conditions. The 16S rRNA gene reads are publicly available from the National Center for Biotechnology Information Sequence Read Archive (SRA) under the Bioproject accession number PRJNA907285.

References

  1. Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17:212.

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Obesity and overweight. World Health Organization. Published 2021 Accessed January 11, 2023 [Internet]. 2021 [cited 2023 Jan 11]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

  3. Kadouh HC, Acosta A. Current paradigms in the etiology of obesity. Tech Gastrointest Endosc. 2017;19:2–11.

    Article  Google Scholar 

  4. Suzuki K. The developing world of DOHaD. J Dev Orig Health Dis. 2018;9:266–9.

    Article  CAS  PubMed  Google Scholar 

  5. Butel MJ, Waligora-Dupriet AJ, Wydau-Dematteis S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018;9:590–7.

    Article  PubMed  Google Scholar 

  6. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petraroli M, Castellone E, Patianna V. Esposito S. gut microbiota and obesity in adults and children: the state of the art. Front Pediatr. 2021;9:657020.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cho KY. Association of gut microbiota with obesity in children and adolescents. Clin Exp Pediatr [Internet]. 2022 Nov 16 [cited 2023 Jan 3]; Available from: http://e-cep.org/journal/view.php?doi=10.3345/cep.2021.01837

  9. Pinart M, Dötsch A, Schlicht K, Laudes M, Bouwman J, Forslund SK, et al. Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis. Nutrients. 2021;14:12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dalby MJ. Questioning the foundations of the gut microbiota and obesity. Philos Trans R Soc B Biol Sci. 2023;378:20220221.

    Article  Google Scholar 

  11. Sanchez M, Panahi S, Tremblay A. Childhood obesity: a role for gut microbiota? Int J Environ Res Public Health. 2014;12:162–75.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cuevillas B, Milagro FI, Tur JA, Gil‐Campos M, Miguel‐Etayo P, Martínez JA, et al. Fecal microbiota relationships with childhood obesity: A scoping comprehensive review. Obes Rev [Internet]. 2022 Jan [cited 2022 Jul 12];23(S1). Available from: https://onlinelibrary.wiley.com/doi/10.1111/obr.13394

  13. Houtman TA, Eckermann HA, Smidt H, de Weerth C. Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci Rep. 2022;12:3140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scheepers LEJM, Penders J, Mbakwa CA, Thijs C, Mommers M, Arts ICW. The intestinal microbiota composition and weight development in children: the KOALA birth cohort study. Int J Obes. 2015;39:16–25.

    Article  CAS  Google Scholar 

  15. Stanislawski MA, Dabelea D, Wagner BD, Iszatt N, Dahl C, Sontag MK. et al. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian birth cohort. MBio. 2018;9:10–128.

    Article  Google Scholar 

  16. Vael C, Verhulst SL, Nelen V, Goossens H, Desager KN. Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog. 2011;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bergström A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80:2889–900.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qiu J, Zhou C, Xiang S, Dong J, Zhu Q, Yin J, et al. Association between trajectory patterns of body mass index change up to 10 months and early gut microbiota in preterm infants. Front Microbiol. 2022;13:828275.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tadros JS, Llerena A, Sarkar A, Johnson R, Miller EM, Gray HL, et al. Postnatal growth and gut microbiota development influenced early childhood growth in preterm infants. Front Pediatr. 2022;10:850629.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gnawali A. Prematurity and the Risk of Development of Childhood Obesity: Piecing Together the Pathophysiological Puzzle. A Literature Review. Cureus [Internet]. 2021 Dec [cited 2023 Jan 30]; Available from: https://www.cureus.com/articles/77978-prematurity-and-the-risk-of-development-of-childhood-obesity-piecing-together-the-pathophysiological-puzzle-a-literature-review

  21. Ou-Yang MC, Sun Y, Liebowitz M, Chen CC, Fang ML, Dai W, et al. Accelerated weight gain, prematurity, and the risk of childhood obesity: a meta-analysis and systematic review. Salinas Miranda A, editor. PLoS One. 2020;15:e0232238.

  22. Lorthe E, Benhammou V, Marchand-Martin L, Pierrat V, Lebeaux C, Durox M, et al. Cohort Profile: The Etude Epidémiologique sur les Petits Ages Gestationnels-2 (EPIPAGE-2) preterm birth cohort. Int J Epidemiol. 2021;50:1428–9m.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Charles MA, Thierry X, Lanoe JL, Bois C, Dufourg MN, Popa R, et al. Cohort profile: the French national cohort of children (ELFE): birth to 5 years. Int J Epidemiol. 2020;49:368–9j.

    Article  PubMed  Google Scholar 

  24. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Toubon G, Butel MJ, Rozé JC, Nicolis I, Delannoy J, Zaros C, et al. Early Life Factors Influencing Children Gut Microbiota at 3.5 Years from two French birth cohorts. Microorganisms. 2023;11:1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dore J, Ehrlich SD, Levenez F, Pelletier E, Alberti A, Bertrand L, et al. HMS_SOP_07_V1: standard operating procedure for fecal samples DNA extraction, protocol H. International Human Microbiome Standards. [Internet]. 2015. Available from: http://www.microbiome-standards.org

  27. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao N, Chen J, Carroll IM, Ringel-Kulka T, Epstein MP, Zhou H, et al. Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based Kernel association test. Am J Hum Genet. 2015;96:797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Genuer R, Poggi JM, Tuleau-Malot C. VSURF: an R package for variable selection using random forests. R J. 2015;7:19.

    Article  Google Scholar 

  30. Aria M, Cuccurullo C, Gnasso A. A comparison among interpretative proposals for random forests. Mach Learn Appl. 2021;6:100094.

    Google Scholar 

  31. Stekhoven DJ, Buhlmann P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112–8.

    Article  CAS  PubMed  Google Scholar 

  32. Xu P, Li M, Zhang J, Zhang T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol. 2012;12:283.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Indiani CM, dos SP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, et al. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018;14:501–9.

    Article  PubMed  Google Scholar 

  35. Shin S, Cho KY. Altered gut microbiota and shift in Bacteroidetes between young obese and normal-weight Korean children: a cross-sectional observational study. BioMed Res Int. 2020;2020:1–19.

    Google Scholar 

  36. Reffien MAM, Azit NA, Pakhrurdin NAM, Hassan R, Ahmad N, Nawi AM. The effects of gut microbiota on childhood obesity: a systematic review and meta-analysis. Hong Kong J Paediatr Res. 2019;2:52–62.

    Google Scholar 

  37. Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de la Cuesta-Zuluaga J, Mueller N, Álvarez-Quintero R, Velásquez-Mejía E, Sierra J, Corrales-Agudelo V, et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension, and cardiometabolic disease risk factors. Nutrients. 2018;11:51.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation: Gut metabolites in obesity and allergy. Obes Rev. 2017;18:18–31.

    Article  CAS  PubMed  Google Scholar 

  40. Sanmiguel C, Gupta A, Mayer EA. Gut microbiome and obesity: a plausible explanation for obesity. Curr Obes Rep. 2015;4:250–61.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murugesan S, Nirmalkar K, Hoyo-Vadillo C, García-Espitia M, Ramírez-Sánchez D, García-Mena J. Gut microbiome production of short-chain fatty acids and obesity in children. Eur J Clin Microbiol Infect Dis. 2018;37:621–5.

    Article  CAS  PubMed  Google Scholar 

  42. Cho KY. Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC Microbiol. 2021;21:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leong C, Haszard JJ, Heath ALM, Tannock GW, Lawley B, Cameron SL, et al. Using compositional principal component analysis to describe children’s gut microbiota in relation to diet and body composition. Am J Clin Nutr. 2020;111:70–8.

  44. Vazquez‐Moreno M, Perez‐Herrera A, Locia‐Morales D, Dizzel S, Meyre D, Stearns JC, et al. Association of gut microbiome with fasting triglycerides, fasting insulin and obesity status in Mexican children. Pediatr Obes [Internet]. 2021 May [cited 2023 Jan 5];16. Available from: https://onlinelibrary.wiley.com/doi/10.1111/ijpo.12748

  45. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Kleerebezem M, et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 2013;7:707–17.

    Article  CAS  PubMed  Google Scholar 

  47. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut lachnospiraceae. Microorganisms. 2020;8:573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, Becker AB, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 2018;172:368.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abuqwider JN, Mauriello G, Altamimi M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms. 2021;9:1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20:2257–61.

    Article  PubMed  Google Scholar 

  51. Machate DJ, Figueiredo PS, Marcelino G, Guimarães R, de CA, Hiane PA, et al. Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int J Mol Sci. 2020;21:4093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyte JM, Gabler NK, Hollis JH. Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study. Lipids Health Dis. 2016;15:186.

    Article  PubMed  PubMed Central  Google Scholar 

  53. de Lorgeril M, Salen P. New insights into the health effects of dietary saturated and omega-6 and omega-3 polyunsaturated fatty acids. BMC Med. 2012;10:50.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liberali R, Kupek E, de Assis MAA. Dietary patterns and childhood obesity risk: a systematic review. Child Obes. 2020;16:70–85.

    Article  PubMed  Google Scholar 

  55. Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, Capoccia D, et al. Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns. Front Microbiol. 2018;9:1210.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hou YP, He QQ, Ouyang HM, Peng HS, Wang Q, Li J, et al. Human gut microbiota associated with obesity in chinese children and adolescents. BioMed Res Int. 2017;2017:1–8.

    Google Scholar 

  57. Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev. 2004;5:197–216.

    Article  CAS  PubMed  Google Scholar 

  58. Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res. 2007;35:277–89.

    Article  CAS  PubMed  Google Scholar 

  59. Sanz Y, Olivares M. Tiny contributors to severe obesity inside the gut. Gut. 2022;71:2376–8.

    Article  PubMed  Google Scholar 

  60. Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut. 2022;71:2463–80.

    Article  CAS  PubMed  Google Scholar 

  61. Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-del-Alto S, García-Mena J, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci. 2019;20:438.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The ELFE cohort is a joint project between the French Institute for Demographic Studies (INED) and the National Institute of Health and Medical Research (INSERM), in partnership with the French blood transfusion service (Etablissement Français du Sang, EFS), Santé publique France, the National Institute for Statistics and Economic Studies (INSEE), the Direction Générale de la Santé (DGS, part of the Ministry of Health and Social Affairs), the Direction Générale de la Prévention des Risques (DGPR, Ministry for the Environment), the Direction de la Recherche, des Etudes, de l’Evaluation et des Statistiques (DREES, Ministry of Health and Social Affairs), the Département des Etudes, de la Prospective et des Statistiques (DEPS, Ministry of Culture), and the Caisse Nationale des Allocations Familiales (CNAF), with the support of the Ministry of Higher Education and Research and the Institut national de la Jeunesse et de l’Education Populaire (INJEP). The ELFE cohort receives a government grant managed by the National Research Agency under the “Investissements d’avenir” program (ANR-11-EQPX-0038, ANR-19-COHO-0001). The EPIPAGE 2 cohort was funded by the French Institute of Public Health and its partners: the French Health Ministry, The National Institute of Health and Medical Research, the National Institute of Cancer, and the National Solidarity Fund for Autonomy, the National Research Agency under the French Equipex program of “Investissements d’avenir” (ANR-11-EQPX-0038, ANR-19-COHO-0001), and the PremUp foundation. The EPIFLORE ancillary study has been funded by the French National Agency for Research (ANR-12-BSV3–0025), and the Nestec Research Center (Vers-chez-les-Blanc, Switzerland) for the constitution of the collection of stools. The 16S rRNA sequencing was funded by the Biostime Institute for Nutrition and Care-Geneva (BINC-Geneva).

Author information

Authors and Affiliations

Authors

Contributions

J-CR, M-JB, M-AC, P-YA, and JA were responsible for data collection. GT, M-JB, M-AC, and JA designed the research. GT and JD analyzed the data. GT drafted the manuscript and J-CR, M-JB, M-AC, P-YA, JA, and JD contributed to writing the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Julio Aires or Marie-Aline Charles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toubon, G., Butel, MJ., Rozé, JC. et al. Association between gut microbiota at 3.5 years of age and body mass index at 5 years: results from two French nationwide birth cohorts. Int J Obes 48, 503–511 (2024). https://doi.org/10.1038/s41366-023-01442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01442-x

Search

Quick links