Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

The role of body mass index on the association between the energy-adjusted dietary inflammatory index and hyperuricemia: a mediation analysis based on NHANES (2007–2016)

Abstract

Background

The Energy-Adjusted Dietary Inflammatory Index (E-DII) is related to both body mass index (BMI) and hyperuricemia. However, the association among BMI, hyperuricemia and DII is yet to be fully elucidated. The purpose of this study is to explore the role of BMI in the relationship between E-DII and hyperuricemia in the American population.

Methods

A cross-sectional study was conducted using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2016, with a sample size of 10,571 participants. The study used a weighted logistic regression model and a generalized additive model (GAM) to explore the associations among BMI, hyperuricemia and E-DII. Furthermore, mediation analysis was utilized to illustrate the mediating relationships among these variables.

Results

The results of the study indicated that a higher E-DII was related to an increased risk of hyperuricemia. The association between E-DII and hyperuricemia was partially mediated by BMI.

Conclusions

E-DII is associated with hyperuricemia. BMI mediates the relationship between E-DII and hyperuricemia among Americans, which provides crucial information for the prevention of hyperuricemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3: Associations between E-DII, BMI and HUA using GAM models.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Peng TC, Wang CC, Kao TW, Chan JY, Yang YH, Chang YW, et al. Relationship between hyperuricemia and lipid profiles in US adults. BioMed Res Int. 2015;2015:127596.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Keenan T, Blaha MJ, Nasir K, Silverman MG, Tota-Maharaj R, Carvalho JA, et al. Relation of uric acid to serum levels of high-sensitivity C-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis. Am J Cardiol. 2012;110:1787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dai X, Yuan J, Yao P, Yang B, Gui L, Zhang X, et al. Association between serum uric acid and the metabolic syndrome among a middle- and old-age Chinese population. Eur J Epidemiol. 2013;28:669–76.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, et al. Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PloS One. 2014;9:e114259.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension (Dallas, Tex. 1979). 2003;41:1183–90.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang M, Zhu X, Wu J, Huang Z, Zhao Z, Zhang X, et al. Prevalence of hyperuricemia among chinese adults: findings from two nationally representative cross-sectional surveys in 2015–16 and 2018–19. Front Immunol. 2021;12:791983.

    Article  CAS  PubMed  Google Scholar 

  7. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatology (Hoboken, N.J.). 2019;71:991–9.

    Article  PubMed  Google Scholar 

  8. Multidisciplinary Expert Task Force on H, Related D. Chinese multidisciplinary expert consensus on the diagnosis and treatment of hyperuricemia and related diseases. Chin Med J. 2017;130:2473–88.

  9. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.

    Article  PubMed  Google Scholar 

  10. Diao H, Yan F, He Q, Li M, Zheng Q, Zhu Q et al. Association between dietary inflammatory index and sarcopenia: a meta-analysis. In: Nutrients, 2023.

  11. Phillips CM, Chen LW, Heude B, Bernard JY, Harvey NC, Duijts L, et al. Dietary inflammatory index and non-communicable disease risk: a narrative review. Nutrients. 2019;11:8.

    Article  Google Scholar 

  12. Ye C, Huang X, Wang R, Halimulati M, Aihemaitijiang S, Zhang Z. Dietary inflammatory index and the risk of hyperuricemia: a cross-sectional study in chinese adult residents. Nutrients. 2021;13:12.

    Article  Google Scholar 

  13. Kim HS, Kwon M, Lee HY, Shivappa N, Hébert JR, Sohn C, et al. Higher pro-inflammatory dietary score is associated with higher hyperuricemia risk: results from the case-controlled Korean genome and epidemiology study_cardiovascular disease association study. Nutrients. 2019;11:8.

    Google Scholar 

  14. Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The global syndemic of obesity, undernutrition, and climate change: the lancet commission report. Lancet (London, England). 2019;393:791–846.

    Article  PubMed  Google Scholar 

  15. Hariharan R, Odjidja EN, Scott D, Shivappa N, Hébert JR, Hodge A, et al. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obesity Rev. 2022;23:e13349.

    Article  CAS  Google Scholar 

  16. Wang YB, Shivappa N, Hébert JR, Page AJ, Gill TK, Melaku YA. Association between dietary inflammatory index, dietary patterns, plant-based dietary index and the risk of obesity. Nutrients. 2021;13:5.

    CAS  Google Scholar 

  17. Feng X, Yang Y, Xie H, Zhuang S, Fang Y, Dai Y, et al. The association between hyperuricemia and obesity metabolic phenotypes in chinese general population: a retrospective analysis. Front Nutr. 2022;9:773220.

    Article  PubMed  PubMed Central  Google Scholar 

  18. United States Census Bureau (2008) Current Population Survey (CPS) - Definitions and Explanations. In.

  19. Scinicariello F, Buser MC, Balluz L, Gehle K, Murray HE, Abadin HG, et al. Perfluoroalkyl acids, hyperuricemia and gout in adults: Analyses of NHANES 2009–2014. Chemosphere. 2020;259:127446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, et al. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: A prospective study based on 6 rounds of NHANES. Chemosphere. 2023;329:138650.

    Article  CAS  PubMed  Google Scholar 

  21. Sun M, Wang L, Hu Y, Wang X, Yan S, Guo Y, et al. Cognitive impairment mediates the association between dietary inflammation and depressive symptoms in the elderly. Nutrients. 2022;14:23.

    Article  Google Scholar 

  22. SSY AL, Natto ZS, Midle JB, Gyurko R, O’Neill R, Steffensen B. Association between time since quitting smoking and periodontitis in former smokers in the National Health and Nutrition Examination Surveys (NHANES) 2009 to 2012. J Periodontol. 2019;90:16–25.

    Article  Google Scholar 

  23. Liu N, Feng Y, Li J, Ma X, Ma F. Relationship between the dietary inflammatory index and kidney stone prevalence. World J Urol. 2022;40:1545–52.

    Article  CAS  PubMed  Google Scholar 

  24. Okekunle AP, Asowata JO, Adedokun B, Akpa OM. Secondhand smoke exposure and dyslipidemia among non-smoking adults in the United States. Indoor Air. 2022;32:e12914.

    Article  CAS  PubMed  Google Scholar 

  25. Qin Z, Zhao J, Li J, Yang Q, Geng J, Liao R, et al. Low lean mass is associated with lower urinary tract symptoms in US men from the 2005-2006 national health and nutrition examination survey dataset. Aging. 2021;13:21421–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gao X, Curhan G, Forman JP, Ascherio A, Choi HK. Vitamin C intake and serum uric acid concentration in men. J Rheumatol. 2008;35:1853–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu XX, Wang XX, Cui LL. Association between Oral vitamin C supplementation and serum uric acid: a meta-analysis of randomized controlled trials. Compl Ther Med. 2021;60:102761.

    Article  Google Scholar 

  28. Li H, Liu X, Lee MH, Li H. Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis. J Food Sci. 2021;86:3265–76.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Shi X, Yu J, Zhang P, Ma P, Sun Y. Dietary vitamin e intake was inversely associated with hyperuricemia in US adults: NHANES 2009–2014. Ann Nutr Metab. 2020;76:354–60.

    Article  CAS  PubMed  Google Scholar 

  30. Aihemaitijiang S, Zhang Y, Zhang L, Yang J, Ye C, Halimulati M, et al. The association between purine-rich food intake and hyperuricemia: a cross-sectional study in Chinese adult residents. Nutrients. 2020;12:3835.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Juraschek SP, Yokose C, McCormick N, Miller ER 3rd, Appel LJ, Choi HK. Effects of dietary patterns on serum urate: results from a randomized trial of the effects of diet on hypertension. Arthritis Rheumatol (Hoboken, N.J.). 2021;73:1014–20.

    Article  CAS  Google Scholar 

  32. Zhou Y, Zhao M, Pu Z, Xu G, Li X. Relationship between oxidative stress and inflammation in hyperuricemia: analysis based on asymptomatic young patients with primary hyperuricemia. Medicine (Baltimore). 2018;97:e13108.

    Article  CAS  PubMed  Google Scholar 

  33. Gherghina ME, Peride I, Tiglis M, Neagu TP, Niculae A, Checherita IA. Uric acid and oxidative stress-relationship with cardiovascular, metabolic, and renal impairment. Int J Mol Sci. 2022;23.

  34. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582:97–105.

    Article  PubMed  Google Scholar 

  35. Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia. Curr Opin Rheumatol. 2013;25:210–6.

    Article  CAS  PubMed  Google Scholar 

  36. Satou R, Penrose H, Navar LG. Inflammation as a regulator of the renin-angiotensin system and blood pressure. Curr Hypertens Rep. 2018;20:100.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nieman DC, Mitmesser SH. Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutrients. 2017;9:5.

    Article  Google Scholar 

  38. Shanely RA, Nieman DC, Henson DA, Jin F, Knab AM, Sha W. Inflammation and oxidative stress are lower in physically fit and active adults. Scand J Med Sci Sports. 2013;23:215–23.

    Article  CAS  PubMed  Google Scholar 

  39. Nieman DC, Lila MA, Gillitt ND. Immunometabolism: a multi-omics approach to interpreting the influence of exercise and diet on the immune system. Ann Rev Food Sci Technol. 2019;10:341–63.

    Article  CAS  Google Scholar 

  40. Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci. 2019;8:201–17.

    Article  PubMed  Google Scholar 

  41. Wedell-Neergaard AS, Krogh-Madsen R, Petersen GL, Hansen ÅM, Pedersen BK, Lund R, et al. Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS One. 2018;13:e0194991.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol. 2010;16:1304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamamoto T, Moriwaki Y, Takahashi S. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin Chimica Acta Int J Clin Chem. 2005;356:35–57.

    Article  CAS  Google Scholar 

  44. Stibůrková B, Pavlíková M, Sokolová J, Kožich V. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS One. 2014;9:e97646.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. van der Heijden RA, Bijzet J, Meijers WC, Yakala GK, Kleemann R, Nguyen TQ, et al. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis. Sci Rep. 2015;5:16474.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170:967–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rathmann W, Funkhouser E, Dyer AR, Roseman JM. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDIA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol. 1998;8:250–61.

    Article  CAS  PubMed  Google Scholar 

  48. Haj Mouhamed D, Ezzaher A, Neffati F, Douki W, Gaha L, Najjar MF. Effect of cigarette smoking on plasma uric acid concentrations. Environ Health Prevent Med. 2011;16:307–12.

    Article  CAS  Google Scholar 

  49. Fanning N, Merriman TR, Dalbeth N, Stamp LK. An association of smoking with serum urate and gout: a health paradox. Semin Arthritis Rheumatism. 2018;47:825–42.

    Article  CAS  PubMed  Google Scholar 

  50. Hu Y, Li Q, Min R, Deng Y, Xu Y, Gao L. The association between serum uric acid and diabetic complications in patients with type 2 diabetes mellitus by gender: a cross-sectional study. PeerJ. 2021;9:e10691.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen J-H, Yeh W-T, Chuang S-Y, Wu Y-Y, Pan W-H. Gender-specific risk factors for incident gout: a prospective cohort study. Clin Rheumatol. 2012;31:239–45.

    Article  PubMed  Google Scholar 

  52. Llorach MA, Böhm GM, Leme JG. Decreased vascular reactions to permeability factors in experimental diabetes. Br J Exp Pathol. 1976;57:747–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodríguez G, Soriano LC, Choi HK. Impact of diabetes against the future risk of developing gout. Ann Rheumatic Dis. 2010;69:2090–4.

    Article  Google Scholar 

  54. Faruque S, Tong J, Lacmanovic V, Agbonghae C, Minaya DM, Czaja K. The Dose Makes the Poison: Sugar and Obesity in the United States - a Review. Pol J Food Nutr Sci. 2019;69:219–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Golay A, Bobbioni E. The role of dietary fat in obesity. Int J Obesity Related Metab Disorders. 1997;21:S2–11.

    Google Scholar 

  56. Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138:65–72.e1-2.

    Article  CAS  PubMed  Google Scholar 

  57. Lee A, Lim W, Kim S, Khil H, Cheon E, An S, et al. Coffee intake and obesity: a meta-analysis. Nutrients. 2019;11:6.

    Google Scholar 

  58. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Investig. 2017;127:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: “Know my methods, WAT(son). Cell Death Differ. 2023;30:279–92.

    Article  CAS  PubMed  Google Scholar 

  60. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851–63.

    Article  CAS  PubMed  Google Scholar 

  61. Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266:3008–11.

    Article  CAS  PubMed  Google Scholar 

  62. Lyngdoh T, Vuistiner P, Marques-Vidal P, Rousson V, Waeber G, Vollenweider P, et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One. 2012;7:e39321.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oyama C, Takahashi T, Oyamada M, Oyamada T, Ohno T, Miyashita M, et al. Serum uric acid as an obesity-related indicator in early adolescence. Tohoku J Exp Med. 2006;209:257–62.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu C, Cui R, Gao M, Rampersad S, You H, Sheng C, et al. The associations of serum uric acid with obesity-related acanthosis nigricans and related metabolic indices. Int J Endocrinol. 2017;2017:5438157.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Han T, Meng X, Shan R, Zi T, Li Y, Ma H, et al. Temporal relationship between hyperuricemia and obesity, and its association with future risk of type 2 diabetes. Int J Obesity. 2018;42:1336–44.

    Article  CAS  Google Scholar 

  66. Hak AE, Curhan GC, Grodstein F, Choi HK. Menopause, postmenopausal hormone use and risk of incident gout. Ann Rheum Dis. 2010;69:1305–9.

    Article  PubMed  Google Scholar 

  67. Su Y, Yeung SSY, Chen YM, Leung JCS, Kwok TCY. The associations of dietary inflammatory potential with musculoskeletal health in chinese community-dwelling older people: The Mr. OS and Ms. OS (Hong Kong) Cohort Study. J Bone Min Res. 2022;37:1179–87.

    Article  Google Scholar 

  68. Wang SF, Shu L, Wang S, Wang XQ, Mu M, Hu CQ, et al. Gender difference in the association of hyperuricemia with hypertension in a middle-aged Chinese population. Blood Pressure. 2014;23:339–44.

    Article  CAS  PubMed  Google Scholar 

  69. Chang HY, Pan WH, Yeh WT, Tsai KS. Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993–96). J Rheumatol. 2001;28:1640–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We thank all participants and all investigators. QH, QZ and HD wrote and reviewed the manuscript; WC and FF made the study design; QH, QZ, HD, ML and QZ conducted the study and analyzed the data; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fang Fang or Weiwei Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Zheng, Q., Diao, H. et al. The role of body mass index on the association between the energy-adjusted dietary inflammatory index and hyperuricemia: a mediation analysis based on NHANES (2007–2016). Int J Obes 48, 339–345 (2024). https://doi.org/10.1038/s41366-023-01418-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01418-x

Search

Quick links