Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

Waist to height ratio as a simple tool for predicting mortality: a systematic review and meta-analysis

Abstract

Background

The association of central obesity with higher rates of mortality is not well studied. This study evaluates the association between waist-to-height ratio (WHtR), as a measure of central obesity, with mortality.

Methods

Documents were retrieved from PubMed, Web of Science, Scopus, and Google Scholar databases until May 2022. Data were extracted from cohort studies reporting effect size (hazard ratio (HR)) regarding the association between WHtR as a continuous (per 1 SD increment) or categorical (highest/lowest) measure and all-cause and cause-specific mortality. Screening of included studies was performed independently by two authors. Moreover, the quality assessment of included studies was performed based on the Newcastle-Ottawa assessment scale. Finally, random effect meta-analysis was performed to pool the data, and the outcomes’ certainty level was assess based on the GRADE criteria.

Results

Of the 815 initial studies, 20 were included in the meta-analysis. Random effect meta-analysis showed that in the general population, the all-cause mortality HRs for categorical and continuous measurements of WHtR increased significantly by 23% (HR:1.23; 95% CI: 1.04–1.41) and 16% (HR:1.16; 95% CI: 1.07–1.25), respectively. Moreover, the hazard of cardiovascular (CVD) mortality increased significantly for categorical and continuous measurements of WHtR by 39% (HR:1.39; 95% CI: 1.18–1.59) and 19% (HR:1.19; 95% CI: 1.07–1.31). The quality assessment score of all included studies was high.

Conclusions

Higher levels of WHtR, indicating central obesity, were associated with an increased hazard of CVD and all-cause mortality. This measure can be used in the clinical setting as a simple tool for predicting mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The PRISMA flowchart.
Fig. 2: Meta-analysis results.
Fig. 3: Meta-analysis results.
Fig. 4: Meta-analysis results.
Fig. 5: Meta-analysis results.
Fig. 6: Meta-analysis results.
Fig. 7: Meta-analysis results.
Fig. 8: Meta-analysis results.
Fig. 9: Meta-analysis results.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its Supplementary Information files].

References

  1. Malafaia AB, Nassif PAN, Lucas RWDC, Garcia RF, Ribeiro JGA, Proença LB. et al. Is the waist/height ratio a better parameter than bmi in determining the cardiometabolic risk profile of obese people?. Arq Bras Cir Dig. 2021;34:1–8.

    Google Scholar 

  2. Jayedi A, Soltani S, Motlagh SZT, Emadi A, Shahinfar H, Moosavi H, et al. Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. BMJ. 2022;376:e067516.

    PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol [Internet]. 2020;49:810–23. https://doi.org/10.1093/ije/dyz273.

    Article  PubMed  Google Scholar 

  4. Chartrand DJ, Murphy-Després A, Alméras N, Lemieux I, Larose E, Després J-P. Overweight, obesity, and CVD risk: a focus on visceral/ectopic fat. Curr Atheroscler Rep [Internet]. 2022;24:185–95. https://doi.org/10.1007/s11883-022-00996-x.

    Article  PubMed  Google Scholar 

  5. Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E, le Roux CW, et al. Obesity and cardiovascular disease: mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation. Eur J Prev Cardiol [Internet]. 2022;29:2218–37. https://doi.org/10.1093/eurjpc/zwac187.

    Article  PubMed  Google Scholar 

  6. Hong S, Park JH, Han K, Lee CB, Kim DS, Yu SH. Association between obesity and cardiovascular disease in elderly patients with diabetes: a retrospective cohort study. J Clin Endocrinol Metab [Internet]. 2022;107:e515–27. https://doi.org/10.1210/clinem/dgab714.

    Article  PubMed  Google Scholar 

  7. Bakhtiyari M, Kazemian E, Kabir K, Hadaegh F, Aghajanian S, Mardi P, et al. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: a population-based cohort study. Sci Rep [Internet]. 2022;12:1544. https://doi.org/10.1038/s41598-022-05536-w.

    Article  CAS  PubMed  Google Scholar 

  8. Kang NL. Association between obesity and blood pressure in common korean people. Vasc Health Risk Manag. 2021;17:371–7.

    PubMed  PubMed Central  Google Scholar 

  9. Fan H, Li X, Zheng L, Chen X, Lan Q, Wu H, et al. Abdominal obesity is strongly associated with cardiovascular disease and its risk factors in elderly and very elderly community-dwelling Chinese. Sci Rep. 2016;6:21521.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu J, Tse LA, Liu Z, Rangarajan S, Hu B, Yin L, et al. Predictive values of anthropometric measurements for cardiometabolic risk factors and cardiovascular diseases among 44,048 Chinese. J Am Heart Assoc. 2019;8:e010870.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shirasawa T, Ochiai H, Yoshimoto T, Nagahama S, Kobayashi M, Ohtsu I, et al. Associations between normal weight central obesity and cardiovascular disease risk factors in Japanese middle-aged adults: a cross-sectional study. J Heal Popul Nutr. 2019;38:1–7.

    Google Scholar 

  12. Song P, Li X, Bu Y, Ding S, Zhai D, Wang E, et al. Temporal trends in normal weight central obesity and its associations with cardiometabolic risk among Chinese adults. Sci Rep [Internet]. 2019;9:1–12. https://doi.org/10.1038/s41598-019-41986-5.

    Article  CAS  Google Scholar 

  13. Golay A, Ybarra J. Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2005;19:649–63.

    CAS  PubMed  Google Scholar 

  14. Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin. 2003;32:805–22.

    Google Scholar 

  15. Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev. 2019;99:1701–63.

    CAS  PubMed  Google Scholar 

  16. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34:11–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Burton JO, Gray LJ, Webb DR, Davies MJ, Khunti K, Crasto W, et al. Association of anthropometric obesity measures with chronic kidney disease risk in a non-diabetic patient population. Nephrol Dial Transplant. 2012;27:1860–6.

    PubMed  Google Scholar 

  19. Stefansson VTN, Schei J, Jenssen TG, Melsom T, Eriksen BO. Central obesity associates with renal hyperfiltration in the non-diabetic general population: a cross-sectional study. BMC Nephrol. 2016;17:10.

    Google Scholar 

  20. Chen S, Liu H, Liu X, Li Y, Li M, Liang Y, et al. Central obesity, C-reactive protein and chronic kidney disease: a community-based cross-sectional study in southern China. Kidney Blood Press Res. 2013;37:392–401.

    CAS  PubMed  Google Scholar 

  21. Hosseinpour A, Daneshzad E, Dezfouli RA, Zamani S, Qorbani M. The association between antioxidants and COVID-19 outcomes: a systematic review on observational studies. Biol Trace Elem Res [Internet]. 2023;201:5098–114. https://doi.org/10.1007/s12011-023-03588-1.

    Article  CAS  PubMed  Google Scholar 

  22. Kalaitzidis RG, Siamopoulos KC. The role of obesity in kidney disease: recent findings and potential mechanisms. Int Urol Nephrol. 2011;43:771–84.

    PubMed  Google Scholar 

  23. Chen N, Wang W, Huang Y, Shen P, Pei D, Yu H, et al. Community-based study on CKD subjects and the associated risk factors. Nephrol Dial Transplant. 2009;24:2117–23.

    PubMed  PubMed Central  Google Scholar 

  24. De Boer IH, Sibley SD, Kestenbaum B, Sampson JN, Young B, Cleary PA, et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol JASN. 2007;18:235.

    PubMed  Google Scholar 

  25. Rutkowski P, Klassen A, Sebekova K, Bahner U, Heidland A. Renal disease in obesity: the need for greater attention. J Ren Nutr. 2006;16:216–23.

    PubMed  Google Scholar 

  26. Chang AR, Grams ME, Ballew SH, Bilo H, Correa A, Evans M, et al. Adiposity and risk of decline in glomerular filtration rate: Meta-analysis of individual participant data in a global consortium. BMJ. 2019;364:k5301.

    PubMed  PubMed Central  Google Scholar 

  27. Bagby SP. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol. 2004;15:2775–91.

    PubMed  Google Scholar 

  28. Shi S, Ni L, Tian Y, Zhang B, Xiao J, Xu W, et al. Association of obesity indices with diabetic kidney disease and diabetic retinopathy in type 2 diabetes: a real-world study. J Diabetes Res. 2023;2023:3819830.

    PubMed  PubMed Central  Google Scholar 

  29. Maric-Bilkan C. Obesity and diabetic kidney disease. Med Clin. 2013;97:59–74.

    Google Scholar 

  30. Dai D, Chang Y, Chen Y, Chen S, Yu S, Guo X, et al. Visceral adiposity index and lipid accumulation product index: two alternate body indices to identify chronic kidney disease among the rural population in Northeast China. Int J Environ Res Public Health. 2016;13:1–11.

    Google Scholar 

  31. Memarian E, Nilsson PM, Zia I, Christensson A, Engström G. The risk of chronic kidney disease in relation to anthropometric measures of obesity: a Swedish cohort study. BMC Nephrol [Internet]. 2021;22:1–10. https://doi.org/10.1186/s12882-021-02531-7.

    Article  Google Scholar 

  32. Man REK, Gan ATL, Fenwick EK, Gupta P, Wong MYZ, Wong TY, et al. The relationship between generalized and abdominal obesity with diabetic kidney disease in type 2 diabetes: a multiethnic asian study and meta-analysis. Nutrients. 2018;10:1685.

    PubMed  PubMed Central  Google Scholar 

  33. Wosu AC, Vélez JC, Barbosa C, Andrade A, Frye M, Chen X, et al. The relationship between high risk for obstructive sleep apnea and general and central obesity: findings from a sample of Chilean college students. Int Sch Res Not. 2014;2014:871681.

    Google Scholar 

  34. Onat A, Hergenç G, Yüksel H, Can G, Ayhan E, Kaya Z, et al. Neck circumference as a measure of central obesity: associations with metabolic syndrome and obstructive sleep apnea syndrome beyond waist circumference. Clin Nutr. 2009;28:46–51.

    PubMed  Google Scholar 

  35. Lam JCM, Mak JCW, Ip MSM. Obesity, obstructive sleep apnoea and metabolic syndrome. Respirology. 2012;17:223–36.

    PubMed  Google Scholar 

  36. Balat K, Pazarlı AC, Köseoğlu Hİ, Yaşayancan N, Demir O. Importance of anthropometric measurements to determine cardiometabolic diseases in obstructive sleep apnea syndrome. Turkish Thorac J. 2021;22:11–7.

    Google Scholar 

  37. Cai X, Luo D, Liu S, Li R, Lu Y, Li M, et al. Four-year changes in central fatness, risk of diabetes, and metabolic control in older adults: a cohort study with mediation analysis. Korean J Intern Med. 2022;37:230–40.

    CAS  PubMed  Google Scholar 

  38. Xu T, Liu J, Liu J, Zhu G, Han S. Relation between metabolic syndrome and body compositions among Chinese adolescents and adults from a large-scale population survey. BMC Public Health. 2017;17:1–8.

    Google Scholar 

  39. Zhang J, Zhu W, Qiu L, Huang L, Fang L. Sex- and age-specific optimal anthropometric indices as screening tools for metabolic syndrome in Chinese adults. Int J Endocrinol. 2018;2018:1067603.

    PubMed  PubMed Central  Google Scholar 

  40. Widjaja NA, Prihaningtyas RA, Hanindita MH, Irawan R, Ugrasena IDG, Handajani R. Adiponectin, anthropometric measurements and insulin resistance in adolescence with obesity. Malays J Nutr. 2020;26:165–72.

    Google Scholar 

  41. Liu PJ, Ma F, Lou HP, Zhu YN. Normal-weight central obesity is associated with metabolic disorders in Chinese postmenopausal women. Asia Pac J Clin Nutr. 2017;26:692–7.

    CAS  PubMed  Google Scholar 

  42. Ferreira-Hermosillo A, Ramírez-Rentería C, Mendoza-Zubieta V, Molina-Ayala MA. Utility of the waist-to-height ratio, waist circumference and body mass index in the screening of metabolic syndrome in adult patients with type 1 diabetes mellitus. Diabetol Metab Syndr. 2014;6:1–7.

    Google Scholar 

  43. Lampignano L, Zupo R, Donghia R, Guerra V, Castellana F, Murro I, et al. Cross-sectional relationship among different anthropometric parameters and cardiometabolic risk factors in a cohort of patients with overweight or obesity. PLoS One [Internet]. 2020;15:1–12. https://doi.org/10.1371/journal.pone.0241841.

    Article  CAS  Google Scholar 

  44. Li J, Zhu L, Wei Y, Lv J, Guo Y, Bian Z, et al. Association between adiposity measures and COPD risk in Chinese adults. Eur Respir J [Internet]. 2020;55. Available from: https://doi.org/10.1183/13993003.01899-2019.

  45. Pang Y, Kartsonaki C, Guo Y, Chen Y, Yang L, Bian Z, et al. Central adiposity in relation to risk of liver cancer in Chinese adults: a prospective study of 0.5 million people. Int J Cancer. 2019;145:1245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson SS, Van Dyke AL, Zhu B, Pfeiffer RM, Petrick JL, Adami HO, et al. Anthropometric risk factors for cancers of the biliary tract in the biliary tract cancers pooling project. Cancer Res. 2019;79:3973–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chandramouli C, Tay WT, Bamadhaj NS, Tromp J, Teng THK, Yap JJL, et al. Association of obesity with heart failure outcomes in 11 Asian regions: a cohort study. PLoS Med. 2019;16:1–17.

    Google Scholar 

  48. Tokushige A, Ueda S, Tomiyama H, Ohishi M, Kohro T, Higashi Y, et al. Association between waist-to-height ratio and endothelial dysfunction in patients with morbidity ― a report from the FMD-J study. Circ J. 2017;81:1911–8.

    CAS  PubMed  Google Scholar 

  49. Parente EB, Harjutsalo V, Forsblom C, Groop PH. The impact of central obesity on the risk of hospitalization or death due to heart failure in type 1 diabetes: a 16-year cohort study. Cardiovasc Diabetol [Internet]. 2021;20:1–9. https://doi.org/10.1186/s12933-021-01340-4.

    Article  CAS  Google Scholar 

  50. Welborn TA, Dhaliwal SS. Preferred clinical measures of central obesity for predicting mortality. Eur J Clin Nutr. 2007;61:1373–9.

    CAS  PubMed  Google Scholar 

  51. Ioannou GN, Weiss NS, Boyko EJ, Kowdley KV, Kahn SE, Carithers RL Jr, et al. Is central obesity associated with cirrhosis-related death or hospitalization? A population-based, cohort study. Clin Gastroenterol Hepatol. 2005;3:67–74.

    PubMed  Google Scholar 

  52. Carmienke S, Freitag MH, Pischon T, Schlattmann P, Fankhaenel T, Goebel H, et al. General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis. Eur J Clin Nutr. 2013;67:573–85.

    CAS  PubMed  Google Scholar 

  53. Chang SH, Beason TS, Hunleth JM, Colditz GA. A systematic review of body fat distribution and mortality in older people. Maturitas [Internet]. 2012;72:175–91. https://doi.org/10.1016/j.maturitas.2012.04.004.

    Article  PubMed  Google Scholar 

  54. Hajian K, Abdi Dezfouli R, Darvishi A, Radmanesh R, Heshmat R. Tenecteplase in managing acute ischemic stroke: a long-term cost–utility analysis in Iran. Expert Rev Pharmacoecon Outcomes Res [Internet]. 2023;23:123–33. Available from: https://doi.org/10.1080/14737167.2023.2152008.

  55. Ashwell M, Mayhew L, Richardson J, Rickayzen B. Waist-to-height ratio is more predictive of years of life lost than body mass index. PLoS One. 2014;9:e103483.

    PubMed  PubMed Central  Google Scholar 

  56. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13:275–86.

    CAS  PubMed  Google Scholar 

  57. Sommer I, Teufer B, Szelag M, Nussbaumer-Streit B, Titscher V, Klerings I, et al. The performance of anthropometric tools to determine obesity: a systematic review and meta-analysis. Sci Rep [Internet]. 2020;10:1–12. https://doi.org/10.1038/s41598-020-69498-7.

    Article  CAS  Google Scholar 

  58. Lee CMY, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61:646–53.

    PubMed  Google Scholar 

  59. Parente EB, Mutter S, Harjutsalo V, Ahola AJ, Forsblom C, Groop PH. Waist-height ratio and waist are the best estimators of visceral fat in type 1 diabetes. Sci Rep [Internet]. 2020;10:1–10. https://doi.org/10.1038/s41598-020-75667-5.

    Article  CAS  Google Scholar 

  60. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, et al. The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab. 2010;95:1777–85.

    CAS  PubMed  Google Scholar 

  61. Dybala MP, Brady MJ, Hara M. Disparity in adiposity among adults with normal body mass index and waist-to-height ratio. iScience [Internet]. 2019;21:612–23. https://doi.org/10.1016/j.isci.2019.10.062.

    Article  PubMed  Google Scholar 

  62. Cameron AJ, Magliano DJ, Söderberg S. A systematic review of the impact of including both waist and hip circumference in risk models for cardiovascular diseases, diabetes and mortality. Obes Rev. 2013;14:86–94.

    CAS  PubMed  Google Scholar 

  63. Bohr AD, Laurson K, McQueen MB. A novel cutoff for the waist-to-height ratio predicting metabolic syndrome in young American adults. BMC Public Health [Internet]. 2016;16:1–9. https://doi.org/10.1186/s12889-016-2964-6.

    Article  CAS  Google Scholar 

  64. Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370:m3324.

    PubMed  PubMed Central  Google Scholar 

  65. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ [Internet]. 2009;339:332–6. https://doi.org/10.1136/bmj.b2535.

    Article  Google Scholar 

  66. Beller EM, Glasziou PP, Altman DG, Hopewell S, Bastian H, Chalmers I, et al. PRISMA for abstracts: reporting systematic reviews in journal and conference abstracts. PLoS Med. 2013;10:e1001419.

    PubMed  PubMed Central  Google Scholar 

  67. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    PubMed  Google Scholar 

  68. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924 LP–926.

    Google Scholar 

  69. Bevilacqua MR, Gimeno SGA. Abdominal obesity in Japanese-Brazilians: which measure is best for predicting all-cause and cardiovascular mortality? TT - Obesidade abdominal em nipo-brasileiros: que medida antropométrica tem maior capacidade de predizer a mortalidade geral e por doen. Cad Saúde Pública [Internet]. 2011;27:1986–96. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2011001000012.

  70. Luksiene D, Tamosiunas A, Virviciute D, Bernotiene G, Peasey A. Anthropometric trends and the risk of cardiovascular disease mortality in a Lithuanian urban population aged 45–64 years. Scand J Public Health. 2015;43:882–9.

    PubMed  PubMed Central  Google Scholar 

  71. Moazzeni SS, Tamehri Zadeh SS, Asgari S, Azizi F, Hadaegh F. Anthropometric indices and the risk of incident sudden cardiac death among adults with and without diabetes: over 15 years of follow-up in the Tehran Lipid and Glucose Study. Diabetol Metab Syndr [Internet]. 2021;13:1–12. https://doi.org/10.1186/s13098-021-00701-z.

    Article  CAS  Google Scholar 

  72. Nascimento-Souza MA, De Melo, Mambrini JV, Peixoto SV, Lima-Costa MF. Association between “a body shape index” and mortality: Bambuí cohort study of aging, brazil. Cad Saude Publica. 2021;37:1–12.

    Google Scholar 

  73. Petursson H, Sigurdsson JA, Bengtsson C, Nilsen TIL, Getz L. Body configuration as a predictor of mortality: comparison of five anthropometric measures in a 12 year follow-up of the norwegian HUNT 2 study. PLoS One. 2011;6:e26621.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Schneider HJ, Wallaschofski H, Völzke H, Markus MR, Doerr M, Felix SB, Nauck M, Friedrich N. Incremental effects of endocrine and metabolic biomarkers and abdominal obesity on cardiovascular mortality prediction. PLoS One. 2012;7:1–7.

    Google Scholar 

  75. Sluik D, Boeing H, Montonen J, Pischon T, Kaaks R, Teucher B, et al. Associations between general and abdominal adiposity and mortality in individuals with diabetes mellitus. Am J Epidemiol. 2011;174:22–34.

    PubMed  Google Scholar 

  76. Song X, Tabák AG, Zethelius B, Yudkin JS, Söderberg S, Laatikainen T, et al. Obesity attenuates gender differences in cardiovascular mortality. Cardiovasc Diabetol. 2014;13:1–10.

    CAS  Google Scholar 

  77. Song X, Jousilahti P, Stehouwer CDA, Söderberg S, Onat A, Laatikainen T, et al. Cardiovascular and all-cause mortality in relation to various anthropometric measures of obesity in Europeans. Nutr Metab Cardiovasc Dis. 2015;25:295–304.

    CAS  PubMed  Google Scholar 

  78. Lo K, Huang YQ, Shen G, Huang JY, Liu L, Yu YL, et al. Effects of waist to height ratio, waist circumference, body mass index on the risk of chronic diseases, all-cause, cardiovascular and cancer mortality. Postgrad Med J. 2021;97:306–11.

    PubMed  Google Scholar 

  79. Yu P, Pan Y, Zheng H, Wang X, Yan H, Tong X, et al. Association of high waist-to-height ratio with functional outcomes in patients with acute ischemic stroke: a report from the ACROSS-China study. Med (United States). 2017;96:e6520.

    Google Scholar 

  80. Chen J, Li M, Hao B, Cai Y, Li H, Zhou W, et al. Waist to height ratio is associated with an increased risk of mortality in Chinese patients with heart failure with preserved ejection fraction. BMC Cardiovasc Disord [Internet]. 2021;21:1–11. https://doi.org/10.1186/s12872-021-02080-9.

    Article  CAS  Google Scholar 

  81. David CN, de Mello RB, Bruscato NM, Moriguchi EH. Overweight and abdominal obesity association with all-cause and cardiovascular mortality in the elderly aged 80 and over: a cohort study. J Nutr Heal Aging. 2017;21:597–603.

    CAS  Google Scholar 

  82. Dhana K, Kavousi M, Ikram MA, Tiemeier HW, Hofman A, Franco OH. Body shape index in comparison with other anthropometric measures in prediction of total and cause-specific mortality. J Epidemiol Community Health. 2015;70:90–6.

    PubMed  Google Scholar 

  83. Farrell SW, Barlow CE, Willis BL, Leonard D, Pavlovic A, Defina LF, et al. Cardiorespiratory fitness, different measures of adiposity, and cardiovascular disease mortality risk in women. J Women’s Heal. 2020;29:319–26.

    Google Scholar 

  84. Gnatiuc L, Tapia-Conyer R, Wade R, Ramirez-Reyes R, Aguilar-Ramirez D, Herrington W, et al. Abdominal and gluteo-femoral markers of adiposity and risk of vascular-metabolic mortality in a prospective study of 150,000 Mexican adults. Eur J Prev Cardiol. 2022;29:730–8.

    PubMed  Google Scholar 

  85. De Hollander EL, Bemelmans WJE, De Groot LCPGM. Associations between changes in anthropometric measures and mortality in old age: a role for mid-upper arm circumference? J Am Med Dir Assoc [Internet]. 2013;14:187–93. https://doi.org/10.1016/j.jamda.2012.09.023.

    Article  PubMed  Google Scholar 

  86. Howell CR, Mehta T, Ejima K, Ness KK, Cherrington A, Fontaine KR. Body composition and mortality in Mexican American adults: results from the national health and nutrition examination survey. Obesity. 2018;26:1372–80.

    PubMed  Google Scholar 

  87. Huai P, Liu J, Ye X, Li W-Q. Association of central obesity with all cause and cause-specific mortality in US adults: a prospective cohort study. Front Cardiovasc Med. 2022;9:1–12.

    Google Scholar 

  88. National Institute for Health and Care Excellence (NICE). Nidentification and classification of overweight and obesity (update)o Title [Internet]. 2022. Available from: https://www.nice.org.uk/guidance/cg189.

  89. Ammar KA, Redfield MM, Mahoney DW, Johnson M, Jacobsen SJ, Rodeheffer RJ. Central obesity: association with left ventricular dysfunction and mortality in the community. Am Heart J. 2008;156:975–81.

    PubMed  PubMed Central  Google Scholar 

  90. Coutinho T, Goel K, Corrêa De Sá D, Carter RE, Hodge DO, Kragelund C, et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of “normal weight central obesity.”. J Am Coll Cardiol [Internet]. 2013;61:553–60. https://doi.org/10.1016/j.jacc.2012.10.035.

    Article  PubMed  Google Scholar 

  91. Darvishi A, Mousavi M, Abdi Dezfouli R, Shirazikhah M, Alizadeh Zarei M, Hendi H, et al. Cost-benefit analysis of stroke rehabilitation in Iran. Expert Rev Pharmacoecon Outcomes Res [Internet]. 2023;23:1–11. https://doi.org/10.1080/14737167.2023.2200938.

    Article  Google Scholar 

  92. Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Jimenez F. The concept of normal weight obesity. Prog Cardiovasc Dis [Internet]. 2014;56:426–33. https://doi.org/10.1016/j.pcad.2013.10.003.

    Article  PubMed  Google Scholar 

  93. Sahakyan KR, Somers VK, Rodriguez-Escudero JP, Hodge DO, Carter RE, Sochor O, et al. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann Intern Med. 2015;163:827–35.

    PubMed  PubMed Central  Google Scholar 

  94. Zhu Q, Shen F, Ye T, Zhou Q, Deng H, Gu X. Waist-to-height ratio is an appropriate index for identifying cardiometabolic risk in Chinese individuals with normal body mass index and waist circumference. J Diabetes. 2014;6:527–34.

    PubMed  Google Scholar 

  95. Yoo EG. Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean J Pediatr. 2016;59:425–31.

    PubMed  PubMed Central  Google Scholar 

  96. Sharma S, Batsis JA, Coutinho T, Somers VK, Hodge DO, Carter RE, et al. Normal-weight central obesity and mortality risk in older adults with coronary artery disease. Mayo Clin Proc [Internet]. 2016;91:343–51. https://doi.org/10.1016/j.mayocp.2015.12.007.

    Article  PubMed  Google Scholar 

  97. Ma J, Xiao L. Association of general and central obesity and atopic and nonatopic asthma in US adults. J Asthma. 2013;50:395–402.

    PubMed  Google Scholar 

  98. Harvie M, Hooper L, Howell AH. Central obesity and breast cancer risk: a systematic review. Obes Rev. 2003;4:157–73.

    CAS  PubMed  Google Scholar 

  99. Abdi Dezfouli R, Hosseinpour A, Qorbani M, Daneshzad E. The efficacy of topical aminophylline in local fat reduction: a systematic review [Internet]. Vol. 14, Frontiers in Endocrinology. 2023. Available from: https://www.frontiersin.org/articles/10.3389/fendo.2023.1087614.

  100. Papoutsakis C, Chondronikola M, Antonogeorgos G, Papadakou E, Matziou V, Drakouli M, et al. Associations between central obesity and asthma in children and adolescents: a case-control study. J Asthma. 2015;52:128–34.

    PubMed  Google Scholar 

  101. Nevill AM, Stewart AD, Olds T, Duncan MJ. A new waist-to-height ratio predicts abdominal adiposity in adults. Res Sport Med [Internet]. 2020;28:15–26. https://doi.org/10.1080/15438627.2018.1502183.

    Article  Google Scholar 

  102. Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303–7.

    PubMed  Google Scholar 

  103. Ejtahed HS, Kelishadi R, Qorbani M, Motlagh ME, Hasani-Ranjbar S, Angoorani P, et al. Utility of waist circumference-to-height ratio as a screening tool for generalized and central obesity among Iranian children and adolescents: the CASPIAN-V study. Pediatr Diabetes. 2019;20:530–7.

    PubMed  Google Scholar 

  104. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 05 could be a suitable global boundary value. Nutr Res Rev. 2010;23:247–69.

    PubMed  Google Scholar 

Download references

Funding

This study was funded by Alborz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

RA & AH conducted the primary search and the screening stages and wrote the manuscript. SA created tables. NMK performed the analytical procedures. Finally, HE and MQ checked the data and monitored the correctness of the work process.

Corresponding authors

Correspondence to Hanieh-Sadat Ejtahed or Mostafa Qorbani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Alborz University of Medical Sciences.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41366_2023_1388_MOESM1_ESM.docx

Supplementary table 1 (S1). The score of Newcastle-Ottawa assessment scale for the retrieved studies. Supplementary table 2. GRADE evidence profile: The association between central obesity and mo

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi Dezfouli, R., Mohammadian Khonsari, N., Hosseinpour, A. et al. Waist to height ratio as a simple tool for predicting mortality: a systematic review and meta-analysis. Int J Obes 47, 1286–1301 (2023). https://doi.org/10.1038/s41366-023-01388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01388-0

Search

Quick links