Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Association of weight status and the risks of diabetes in adults: a systematic review and meta-analysis of prospective cohort studies

Abstract

Obesity is a known risk factor for type 2 diabetes mellitus (T2DM); however, the associations between underweight and T2DM and between weight status and prediabetes have not been systematically reviewed. We aimed to estimate the relative risks (RRs) of prediabetes/T2DM in underweight/overweight/obesity relative to normal weight. PubMed, Embase, Web of Science, and Cochrane Library were searched from inception to December 8, 2021. Prospective cohort studies with a minimum 12-month follow-up period reporting the association between baseline body mass index (BMI) categories and risk of prediabetes/T2DM in adults were included. Study quality was assessed using the Newcastle-Ottawa Scale. The main analyses of T2DM risk were performed using the ethnic-specific (Asian/non-Asian) BMI classification and additional analyses of prediabetes/T2DM risk by including all eligible studies. Random-effects models with inverse variance weighting were used. Subgroup analyses and meta-regression were conducted to explore the potential effects of pre-specified modifiers. The study protocol was registered with PROSPERO (CRD42020215957). Eighty-four articles involving over 2.69 million participants from 20 countries were included. The pooled RR of prediabetes risk was 1.24 (95% CI: 1.19–1.28, I2 = 9.7%, n = 5 studies) for overweight/obesity vs. normal weight. The pooled RRs of T2DM based on the ethnic-specific BMI categories were 0.93 (95% CI: 0.75–1.15, I2 = 55.5%, n = 12) for underweight, 2.24 (95% CI: 1.95–2.56, I2 = 92.0%, n = 47) for overweight, 4.56 (95% CI: 3.69–5.64, I2 = 96%, n = 43) for obesity, and 22.97 (95% CI: 13.58–38.86, I2 = 92.1%, n = 6) for severe obesity vs. normal weight. Subgroup analyses indicated that underweight is a protective factor against T2DM in non-Asians (RR = 0.68, 95% CI: 0.40–0.99, I2 = 56.1%, n = 6). The magnitude of the RR of T2DM in overweight/obesity decreased with age and varied by region and the assessment methods for weight and T2DM. Overweight/obesity was associated with an increased prediabetes/T2DM risk. Further studies are required to confirm the association between underweight and prediabetes/T2DM, particularly in Asian populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: The relative risk of prediabetes for different weight statuses vs. normal weight.
Fig. 3: The relative risk of diabetes for different weight statuses vs. normal weight based on the ethnic-specific BMI classification.

Similar content being viewed by others

Data availability

Application for datasets generated during and/or analyzed during the current study may be considered by the corresponding author on reasonable request.

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843.

    Article  PubMed  Google Scholar 

  2. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–2290.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yip WCY, Sequeira IR, Plank LD, Poppitt SD. Prevalence of pre-diabetes across ethnicities: a review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for cassification of dysglycaemia. Nutrients. 2017;9:1273.

    Article  PubMed Central  CAS  Google Scholar 

  4. Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55:1310–7.

    Article  PubMed  Google Scholar 

  5. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee M, Saver JL, Hong KS, Song S, Chang KH, Ovbiagele B. Effect of pre-diabetes on future risk of stroke: meta-analysis. BMJ. 2012;344:e3564.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gujral UP, Jagannathan R, He S, Huang M, Staimez LR, Wei J, et al. Association between varying cut-points of intermediate hyperglycemia and risk of mortality, cardiovascular events and chronic kidney disease: a systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2021;9:e001776.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sarwar N, Gao P, Seshasai SRK, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98.

    Article  PubMed  Google Scholar 

  10. Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;89:309–19.

    Article  PubMed  Google Scholar 

  11. Cloostermans L, Wendel-Vos W, Doornbos G, Howard B, Craig CL, Kivimäki M, et al. Independent and combined effects of physical activity and body mass index on the development of Type 2 Diabetes - a meta-analysis of 9 prospective cohort studies. Int J Behav Nutr Phys Act. 2015;12:147.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article  PubMed  Google Scholar 

  13. Schmidt M, Johannesdottir SA, Lemeshow S, Lash TL, Ulrichsen SP, Botker HE, et al. Obesity in young men, and individual and combined risks of type 2 diabetes, cardiovascular morbidity and death before 55 years of age: a Danish 33-year follow-up study. BMJ Open. 2013;3:e002698.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chireh B, D’Arcy C. Shared and unique risk factors for depression and diabetes mellitus in a longitudinal study, implications for prevention: an analysis of a longitudinal population sample aged 45 years. Ther Adv Endocrinol Metab. 2019;10:2042018819865828.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jung JY, Park SK, Oh CM, Ryoo JH, Choi JM, Choi YJ. The risk of type 2 diabetes mellitus according to the categories of body mass index: the Korean Genome and Epidemiology Study (KoGES). Acta Diabetol. 2018;55:479–84.

    Article  PubMed  Google Scholar 

  16. Sairenchi T, Iso H, Irie F, Fukasawa N, Ota H, Muto T. Underweight as a predictor of diabetes in older adults: a large cohort study. Diabetes Care. 2008;31:583–4.

    Article  PubMed  Google Scholar 

  17. Tatsumi Y, Ohno Y, Morimoto A, Nishigaki Y, Maejima F, Mizuno S, et al. U-shaped relationship between body mass index and incidence of diabetes. Diabetol Int. 2012;3:92–8.

    Article  Google Scholar 

  18. Collaboration NCDRF. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

    Article  Google Scholar 

  19. Biswas T, Magalhaes RJS, Townsend N, Kumar D, Mamun A. Double burden of underweight and overweight among women in south and southeast Asia: a systematic review and meta-analysis. Adv Nutr. 2020;11:128–43.

    PubMed  Google Scholar 

  20. Hsu WC, Araneta MR, Kanaya AM, Chiang JL, Fujimoto W. BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care. 2015;38:150–8.

    Article  PubMed  Google Scholar 

  21. Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

  22. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lotta LA, Abbasi A, Sharp SJ, Sahlqvist AS, Waterworth D, Brosnan JM, et al. Definitions of metabolic health and risk of future type 2 diabetes in BMI categories: a systematic review and network meta-analysis. Diabetes Care. 2015;38:2177–87.

    Article  PubMed  Google Scholar 

  24. International Diabetes Federation. What is diabetes?. Available from https://www.idf.org/aboutdiabetes/what-is-diabetes.html. Accessed 28 July 2021.

  25. American Diabetes Association. Diabetes overview. Available from https://www.diabetes.org/diabetes. Accessed 28 July 2021.

  26. Wells. G, Shea. B, O’Connell. D, Peterson. J, Welch. V, Losos. M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed January 31 2021.

  27. Lo CK, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol. 2014;14:45.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011;342:d671.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280:1690–1.

    Article  CAS  PubMed  Google Scholar 

  30. Van Ganse E, Kaufman L, Derde MP, Yernault JC, Delaunois L, Vincken W. Effects of antihistamines in adult asthma: a meta-analysis of clinical trials. Eur Respir J. 1997;10:2216–24.

    Article  PubMed  Google Scholar 

  31. Fagerland MW Chapter 12 - Evidence-Based Medicine and Systematic Reviews. In: Laake P, Benestad HB, Olsen BR (eds). Research in Medical and Biological Sciences (Second Edition). Academic Press: Amsterdam, 2015, pp 431–61

  32. World Bank Country and Lending Groups. Country Classification. Available from https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups. Accessed January 31 2021.

  33. Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e888–e897.

    Article  PubMed  Google Scholar 

  34. Appleton SL, Seaborn CJ, Visvanathan R, Hill CL, Gill TK, Taylor AW, et al. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: a cohort study. Diabetes Care. 2013;36:2388–94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arnlov J, Sundstrom J, Ingelsson E, Lind L. Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men. Diabetes Care. 2011;34:61–5.

    Article  PubMed  CAS  Google Scholar 

  36. Asghar S, Khan AK, Ali SM, Sayeed MA, Bhowmik B, Diep ML, et al. Incidence of diabetes in Asian-Indian subjects: a five year follow-up study from Bangladesh. Prim Care Diabetes. 2011;5:117–24.

    Article  PubMed  Google Scholar 

  37. Aung K, Lorenzo C, Hinojosa MA, Haffner SM. Risk of developing diabetes and cardiovascular disease in metabolically unhealthy normal-weight and metabolically healthy obese individuals. J Clin Endocrinol Metab. 2014;99:462–8.

    Article  CAS  PubMed  Google Scholar 

  38. Beleigoli AM, Appleton SL, Gill TK, Hill CL, Adams RJ. Association of metabolic phenotypes, grip strength and diabetes risk: The 15-year follow-up of the North West Adelaide Health Study, Australia. Obes Res Clin Pract. 2020;14:536–41.

    Article  PubMed  Google Scholar 

  39. Borné Y, Nilsson PM, Melander O, Hedblad B, Engström G. Multiple anthropometric measures in relation to incidence of diabetes: a Swedish population-based cohort study. Eur J Public Health. 2015;25:1100–5.

    Article  PubMed  Google Scholar 

  40. Bragg F, Tang K, Guo Y, Iona A, Du H, Holmes MV, et al. Associations of general and central adiposity with incident diabetes in Chinese men and women. Diabetes Care. 2018;41:494–502.

    Article  PubMed  Google Scholar 

  41. Carey VJ, Walters EE, Colditz GA, Solomon CG, Willett WC, Rosner BA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol. 1997;145:614–9.

    Article  CAS  PubMed  Google Scholar 

  42. Cassano PA, Rosner B, Vokonas PS, Weiss ST. Obesity and body fat distribution in relation to the incidence of non-insulin-dependent diabetes mellitus. A prospective cohort study of men in the normative aging study. Am J Epidemiol. 1992;136:1474–86.

    Article  CAS  PubMed  Google Scholar 

  43. Chan JCY, Chee ML, Tan NYQ, Cheng CY, Wong TY, Sabanayagam C. Differential effect of body mass index on the incidence of diabetes and diabetic retinopathy in two Asian populations. Nutr Diabetes. 2018;8:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chang Y, Jung HS, Yun KE, Cho J, Ahn J, Chung EC, et al. Metabolically healthy obesity is associated with an increased risk of diabetes independently of nonalcoholic fatty liver disease. Obesity. 2016;24:1996–2003.

    Article  CAS  PubMed  Google Scholar 

  46. Chen X, Wu Z, Chen Y, Wang X, Zhu J, Wang N, et al. Risk score model of type 2 diabetes prediction for rural Chinese adults: the Rural Deqing Cohort Study. J Endocrinol Invest. 2017;40:1115–23.

    Article  CAS  PubMed  Google Scholar 

  47. de Mutsert R, Sun Q, Willett WC, Hu FB, van Dam RM. Overweight in early adulthood, adult weight change, and risk of type 2 diabetes, cardiovascular diseases, and certain cancers in men: a cohort study. Am J Epidemiol. 2014;179:1353–65.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dotevall A, Johansson S, Wilhelmsen L, Rosengren A. Increased levels of triglycerides, BMI and blood pressure and low physical activity increase the risk of diabetes in Swedish women. A prospective 18-year follow-up of the BEDA study. Diabet Med. 2004;21:615–22.

    Article  CAS  PubMed  Google Scholar 

  49. Feller S, Boeing H, Pischon T. Body mass index, waist circumference, and the risk of type 2 diabetes mellitus: implications for routine clinical practice. Dtsch Arztebl Int. 2010;107:470–6.

    PubMed  PubMed Central  Google Scholar 

  50. Feng S, Gong X, Liu H, Lu R, Duan T, Wang M, et al. The diabetes risk and determinants of transition from metabolically healthy to unhealthy phenotypes in 49,702 older adults: 4-year cohort study. Obesity. 2020;28:1141–8.

    Article  PubMed  Google Scholar 

  51. Field AE, Manson JE, Laird N, Williamson DF, Willett WC, Colditz GA. Weight cycling and the risk of developing type 2 diabetes among adult women in the United States. Obes Res. 2004;12:267–74.

    Article  PubMed  Google Scholar 

  52. Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol. 1997;146:214–22.

    Article  CAS  PubMed  Google Scholar 

  53. Fujita M, Ueno K, Hata A. Effect of obesity on incidence of type 2 diabetes declines with age among Japanese women. Exp Biol Med. 2009;234:750–7.

    Article  CAS  Google Scholar 

  54. Giraldez-Garcia C, Franch-Nadal J, Sangros FJ, Ruiz A, Carraminana F, Goday A, et al. Adiposity and diabetes risk in adults with pediabetes: Heterogeneity of findings depending on age and anthropometric measure. Obesity. 2018;26:1481–90.

    Article  CAS  PubMed  Google Scholar 

  55. Hadaegh F, Zabetian A, Harati H, Azizi F. Waist/height ratio as a better predictor of type 2 diabetes compared to body mass index in Tehranian adult men–a 3.6-year prospective study. Exp Clin Endocrinol Diabetes. 2006;114:310–15.

    Article  CAS  PubMed  Google Scholar 

  56. Haghighatdoost F, Amini M, Aminorroaya A, Abyar M, Feizi A. Different metabolic/obesity phenotypes are differentially associated with development of prediabetes in adults: results from a 14-year cohort study. World J Diabetes. 2019;10:350–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Han C, Liu Y, Sun X, Luo X, Zhang L, Wang B, et al. Prediction of a new body shape index and body adiposity estimator for development of type 2 diabetes mellitus: the Rural Chinese Cohort Study. Br J Nutr. 2017;118:771–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hinnouho GM, Czernichow S, Dugravot A, Nabi H, Brunner EJ, Kivimaki M, et al. Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J. 2015;36:551–9.

    Article  PubMed  Google Scholar 

  59. Holtermann A, Gyntelberg F, Bauman A, Jensen MT. Cardiorespiratory fitness, fatness and incident diabetes. Diabetes Res Clin Pract. 2017;134:113–20.

    Article  PubMed  Google Scholar 

  60. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345:790–7.

    Article  CAS  PubMed  Google Scholar 

  61. Hu G, Lindström J, Valle TT, Eriksson JG, Jousilahti P, Silventoinen K, et al. Physical activity, body mass index, and risk of type 2 diabetes in patients with normal or impaired glucose regulation. Arch Intern Med. 2004;164:892–6.

    Article  PubMed  Google Scholar 

  62. Ishikawa-Takata K, Ohta T, Moritaki K, Gotou T, Inoue S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur J Clin Nutr. 2002;56:601–7.

    Article  CAS  PubMed  Google Scholar 

  63. Jae SY, Franklin BA, Choo J, Yoon ES, Choi YH, Park WHFitness. body habitus, and the tisk of incident type 2 diabetes mellitus in Korean men. Am J Cardiol. 2016;117:585–9.

    Article  PubMed  Google Scholar 

  64. Janghorbani M, Salamat MR, Amini M, Aminorroaya A. Risk of diabetes according to the metabolic health status and degree of obesity. Diabetes Metab Syndr. 2017;11:s439–s444.

    Article  PubMed  Google Scholar 

  65. Jiamjarasrangsi W, Aekplakorn W. Incidence and predictors of type 2 diabetes among professional and office workers in Bangkok, Thailand. J Med Assoc Thai. 2005;88:1896–904.

    PubMed  Google Scholar 

  66. Joosten MM, Grobbee DE, van der AD, Verschuren WM, Hendriks HF, Beulens JW. Combined effect of alcohol consumption and lifestyle behaviors on risk of type 2 diabetes. Am J Clin Nutr. 2010;91:1777–83.

    Article  CAS  PubMed  Google Scholar 

  67. Jung CH, Lee MJ, Kang YM, Jang JE, Leem J, Hwang JY, et al. The risk of incident type 2 diabetes in a Korean metabolically healthy obese population: the role of systemic inflammation. J Clin Endocrinol Metab. 2015;100:934–41.

    Article  CAS  PubMed  Google Scholar 

  68. Jung HH, Park JI, Jeong JS. Incidence of diabetes and its mortality according to body mass index in south Koreans aged 40-79 years. Clin Epidemiol. 2017;9:667–78.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Krishnan S, Rosenberg L, Djoussé L, Cupples LA, Palmer JR. Overall and central obesity and risk of type 2 diabetes in U.S. black women. Obesity. 2007;15:1860–6.

    Article  PubMed  Google Scholar 

  70. Lamichhane AP, Couper D, Jenkins GP, Stevens J. Longitudinal associations between body mass index during young adulthood, subsequent weight change, and incident diabetes during mid-and older-adulthood in Non-Hispanic White and African American populations: the atherosclerosis risk in communities study. Metab Syndr Relat Disord. 2020;18:313–20.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, et al. Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: two large prospective studies in US men and women. Eur J Epidemiol. 2018;33:1113–23.

    Article  CAS  PubMed  Google Scholar 

  72. Li M, Campbell S, McDermott RA. Six year weight change and type 2 diabetes among Australian Indigenous adults. Diabetes Res Clin Pract. 2010;88:203–8.

    Article  PubMed  Google Scholar 

  73. Li WD, Fu KF, Li GM, Lian YS, Ren AM, Chen YJ, et al. Comparison of effects of obesity and non-alcoholic fatty liver disease on incidence of type 2 diabetes mellitus. World J Gastroenterol. 2015;21:9607–13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liu L, Guan X, Yuan Z, Zhao M, Li Q, Zhang X, et al. Different contributions of dyslipidemia and obesity to the natural history of type 2 diabetes: 3-Year Cohort Study in China. J Diabetes Res. 2019;2019:4328975.

    PubMed  PubMed Central  Google Scholar 

  75. Liu W, Liu J, Shao S, Lin Q, Wang C, Zhang X, et al. Obesity at a young age is associated with development of diabetes mellitus: a prospective cohort study in rural China. Postgrad Med. 2020;132:709–13.

    Article  PubMed  Google Scholar 

  76. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006;91:2906–12.

    Article  CAS  PubMed  Google Scholar 

  77. Meisinger C, Doring A, Thorand B, Heier M, Lowel H. Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr. 2006;84:483–9.

    Article  CAS  PubMed  Google Scholar 

  78. Mishra GD, Carrigan G, Brown WJ, Barnett AG, Dobson AJ. Short-term weight change and the incidence of diabetes in midlife: results from the Australian Longitudinal Study on Women’s Health. Diabetes Care. 2007;30:1418–24.

    Article  PubMed  Google Scholar 

  79. Nguyen B, Bauman A, Ding D. Incident Type 2 diabetes in a Large Australian cohort study: does physical activity or sitting time alter the risk associated with body mass index? J Phys Act Health. 2017;14:13–9.

    Article  PubMed  Google Scholar 

  80. Ning F, Zhang D, Xue B, Zhang L, Zhang J, Zhu Z, et al. Synergistic effects of depression and obesity on type 2 diabetes incidence in Chinese adults. J Diabetes. 2020;12:142–50.

    Article  PubMed  Google Scholar 

  81. Njolstad I, Arnesen E, Lund-Larsen PG. Sex differences in risk factors for clinical diabetes mellitus in a general population: a 12-year follow-up of the Finnmark Study. Am J Epidemiol. 1998;147:49–58.

    Article  CAS  PubMed  Google Scholar 

  82. Oguma Y, Sesso HD, Paffenbarger RS Jr, Lee IM. Weight change and risk of developing type 2 diabetes. Obes Res. 2005;13:945–51.

    Article  PubMed  Google Scholar 

  83. Ohlsson C, Bygdell M, Nethander M, Rosengren A, Kindblom JM. BMI change during puberty is an important determinant of adult type 2 diabetes risk in men. J Clin Endocrinol Metab. 2019;104:1823–32.

    Article  PubMed  Google Scholar 

  84. Papier K, D’Este C, Bain C, Banwell C, Seubsman SA, Sleigh A, et al. Body mass index and type 2 diabetes in Thai adults: defining risk thresholds and population impacts. BMC Public Health. 2017;17:707.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Patja K, Jousilahti P, Hu G, Valle T, Qiao Q, Tuomilehto J. Effects of smoking, obesity and physical activity on the risk of type 2 diabetes in middle-aged Finnish men and women. J Intern Med. 2005;258:356–62.

    Article  CAS  PubMed  Google Scholar 

  86. Sakurai M, Ishizaki M, Morikawa Y, Kido T, Naruse Y, Nakashima Y, et al. Frequency of consumption of balanced meals, bodyweight gain and incident risk of glucose intolerance in Japanese men and women: a cohort study. J Diabetes Investig. 2020;12:763–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sheikh MA, Lund E, Braaten T. The predictive effect of body mass index on type 2 diabetes in the Norwegian women and cancer study. Lipids Health Dis. 2014;13:164.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Someya Y, Tamura Y, Kohmura Y, Aoki K, Kawai S, Daida H, et al. A body mass index over 22 kg/m2 at college age is a risk factor for future diabetes in Japanese men. PLoS One. 2019;14:e0211067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Song BM, Kim HC, Kim DJ, Ahn SV, Kim KM, Lee JM, et al. Aminotransferase levels, body mass index, and the risk of diabetes: a prospective cohort study. Ann Epidemiol. 2018;28:675–80.

    Article  PubMed  Google Scholar 

  90. Soriguer F, Gutierrez-Repiso C, Rubio-Martin E, Garcia-Fuentes E, Almaraz MC, Colomo N, et al. Metabolically healthy but obese, a matter of time? Findings from the prospective Pizarra study. J Clin Endocrinol Metab. 2013;98:2318–25.

    Article  CAS  PubMed  Google Scholar 

  91. Sui X, Hooker SP, Lee IM, Church TS, Colabianchi N, Lee CD, et al. A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women. Diabetes Care. 2008;31:550–555.

    Article  PubMed  Google Scholar 

  92. Sun J, Bao G, Cui J, Yasmeen N, Aslam B, Xin H, et al. The association of diabetes risk score and body mass index with incidence of diabetes among urban and rural adult communities in Qingdao, China. Int J Diabetes Dev Ctries. 2019;39:730–8.

    Article  Google Scholar 

  93. Twig G, Afek A, Derazne E, Tzur D, Cukierman-Yaffe T, Gerstein HC, et al. Diabetes risk among overweight and obese metabolically healthy young adults. Diabetes Care. 2014;37:2989–95.

    Article  CAS  PubMed  Google Scholar 

  94. Vaidya A, Cui L, Sun L, Lu B, Chen S, Liu X, et al. A prospective study of impaired fasting glucose and type 2 diabetes in China: The Kailuan study. Medicine. 2016;95:e5350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vijayakumar G, Manghat S, Vijayakumar R, Simon L, Scaria LM, Vijayakumar A, et al. Incidence of type 2 diabetes mellitus and prediabetes in Kerala, India: results from a 10-year prospective cohort. BMC Public Health. 2019;19:140.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Villegas R, Shu XO, Yang G, Matthews CE, Li H, Cai H, et al. Energy balance and type 2 diabetes: a report from the Shanghai Women’s Health Study. Nutr Metab Cardiovasc Dis. 2009;19:190–197.

    Article  CAS  PubMed  Google Scholar 

  97. Wang B, Zhang M, Wang S, Wang C, Wang J, Li L, et al. Dynamic status of metabolically healthy overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 diabetes mellitus: a cohort study of a rural adult Chinese population. Obes Res Clin Pract. 2018;12:61–71.

    Article  PubMed  Google Scholar 

  98. Wang G, Radovick S, Xu X, Xing H, Tang G, Bartell TR, et al. Strategy for early identification of prediabetes in lean populations: new insight from a prospective Chinese twin cohort of children and young adults. Diabetes Res Clin Pract. 2018;146:101–10.

    Article  PubMed  Google Scholar 

  99. Wang H, Shara NM, Calhoun D, Umans JG, Lee ET, Howard BV. Incidence rates and predictors of diabetes in those with prediabetes: the Strong Heart Study. Diabetes Metab Res Rev. 2010;26:378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81:555–63.

    Article  CAS  PubMed  Google Scholar 

  101. Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. J Epidemiol Community Health. 2005;59:134–9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wei Y, Wang J, Han X, Yu C, Wang F, Yuan J, et al. Metabolically healthy obesity increased diabetes incidence in a middle-aged and elderly Chinese population. Diabetes Metab Res Rev. 2020;36:e3202.

    Article  CAS  PubMed  Google Scholar 

  103. Weinstein AR, Sesso HD, Lee IM, Cook NR, Manson JE, Buring JE, et al. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA. 2004;292:1188–94.

    Article  CAS  PubMed  Google Scholar 

  104. Zhu X, Hu J, Guo H, Ji D, Yuan D, Li M, et al. Effect of metabolic health and obesity phenotype on risk of diabetes mellitus: A population-based longitudinal study. Diabetes Metab Syndr Obes. 2021;14:3485–98.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yu X, Xia F, Zhang W. Trends and geographic variations in self-reported diabetes incidence: a prospective open cohort study of Chinese men and women, 1997-2015. Diabet Med. 2021;38:e14447.

    Article  PubMed  Google Scholar 

  106. Xu S, Ming J, Jia A, Yu X, Cai J, Jing C, et al. Normal weight obesity and the risk of diabetes in Chinese people: a 9-year population-based cohort study. Sci Rep. 2021;11:6090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xi Y, Gao W, Zheng K, Lv J, Yu C, Wang S, et al. Overweight and risk of type 2 diabetes: a prospective Chinese Twin Study. Diabetes Metab. 2021: 101278.

  108. Tang ML, Zhou YQ, Song AQ, Wang JL, Wan YP, Xu RY, The relationship between body mass index and incident diabetes mellitus in Chinese aged population: a cohort study. J Diabetes Res. 2021: 5581349.

  109. Nair N, Vittinghoff E, Pletcher MJ, Oelsner EC, Allen NB, Ndumele CE, et al. Associations of body mass index and waist sircumference in young adulthood with later life incident diabetes. J Clin Endocrinol Metab. 2021;106:e5011–e5020.

    PubMed  Google Scholar 

  110. Cuthbertson DJ, Koskinen J, Brown E, Magnussen CG, Hutri-Kahonen N, Sabin M, et al. Fatty liver index predicts incident risk of prediabetes, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Ann Med. 2021;53:1256–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bardenheier BH, Wu WC, Zullo AR, Gravenstein S, Gregg EW. Progression to diabetes by baseline glycemic status among middle-aged and older adults in the United States, 2006-2014. Diabetes Res Clin Pract. 2021;174:108726.

    Article  PubMed  Google Scholar 

  112. Andre P, Proctor G, Driollet B, Garcia-Esquinas E, Lopez-Garcia E, Gomez-Cabrero D, et al. The role of overweight in the association between the Mediterranean diet and the risk of type 2 diabetes mellitus: a mediation analysis among 21 585 UK biobank participants. Int J Epidemiol. 2020;49:1582–90.

    Article  PubMed  Google Scholar 

  113. Mainous AG 3rd, Tanner RJ, Jo A, Anton SD. Prevalence of prediabetes and abdominal obesity among healthy-weight adults: 18-year trend. Ann Fam Med. 2016;14:304–10.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhu Y, Sidell MA, Arterburn D, Daley MF, Desai J, Fitzpatrick SL, et al. Racial/ethnic disparities in the prevalence of diabetes and prediabetes by BMI: Patient outcomes Research To Advance Learning (PORTAL) multisite cohort of adults in the U.S. Diabetes Care. 2019;42:2211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Prevalence of underweight among adults, BMI <18.5 (crude estimate) (%). Available from https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-underweight-among-adults-bmi-18-(crude-estimate)-(-). Accessed June 25 2021.

  116. Prevalence of obesity among adults, BMI ≥30 (crude estimate) (%). Available from https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-obesity-among-adults-bmi-=-30-(crude-estimate)-(-). Accessed June 25 2021.

  117. Narayan KM, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007;30:1562–6.

    Article  CAS  PubMed  Google Scholar 

  118. The NS, Richardson AS, Gordon-Larsen P. Timing and duration of obesity in relation to diabetes: findings from an ethnically diverse, nationally representative sample. Diabetes Care. 2013;36:865–72.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Neermark S, Holst C, Bisgaard T, Bay-Nielsen M, Becker U, Tolstrup JS. Validation and calibration of self-reported height and weight in the Danish Health Examination Survey. Eur J Public Health. 2019;29:291–6.

    Article  PubMed  Google Scholar 

  120. Hodge JM, Shah R, McCullough ML, Gapstur SM, Patel AV. Validation of self-reported height and weight in a large, nationwide cohort of U.S. adults. PLoS One. 2020;15:e0231229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Collaboration NCDRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the consultant service provided by the medical librarian of the University of Hong Kong when designing the search strategy for different databases.

Author information

Authors and Affiliations

Authors

Contributions

YHJ and HM conceived and designed this study. YHJ, LXX, and YJD conducted the database searches, screened titles, abstract, and full text. YHJ and LXX extracted data. YHJ and YJD assessed the study quality. YHJ did statistical analysis and data visualization. YHJ and HM drafted the manuscript. All Authors contributed data interpretation and review and revision of manuscript. HM was responsible for overall supervision to this study.

Corresponding author

Correspondence to Mandy Ho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Hj., Ho, M., Liu, X. et al. Association of weight status and the risks of diabetes in adults: a systematic review and meta-analysis of prospective cohort studies. Int J Obes 46, 1101–1113 (2022). https://doi.org/10.1038/s41366-022-01096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01096-1

This article is cited by

Search

Quick links