Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of obesity on reparative function of human adipose tissue-derived mesenchymal stem cells on ischemic murine kidneys

Abstract

Introduction

Obesity is a health burden that impairs cellular processes. Mesenchymal stem/stromal cells (MSCs) are endowed with reparative properties and can ameliorate renal injury. Obesity impairs human MSC function in-vitro, but its effect on their in-vivo reparative potency remains unknown.

Subjects and methods

Abdominal adipose tissue-derived MSC were harvested from patients without (‘lean’) or with obesity (‘obese’) (body mass index <30 or ≥30 kg/m2, respectively) during kidney donation or bariatric surgery, respectively. MSC (5 × 105/200 µL) or vehicle were then injected into 129S1 mice 2 weeks after renal artery stenosis (RAS) or sham surgery (n = 8/group). Two weeks later, mice underwent magnetic resonance imaging to assess renal perfusion and oxygenation in-vivo, and kidneys then harvested for ex-vivo studies.

Results

Similar numbers of lean and obese-MSCs engrafted in stenotic mouse kidneys. Vehicle-treated RAS mice had reduced stenotic-kidney cortical and medullary perfusion and oxygenation. Lean (but not obese) MSC normalized ischemic kidney cortical perfusion, whereas both effectively mitigated renal hypoxia. Serum creatinine and blood pressure were elevated in RAS mice and lowered only by lean-MSC. Both types of MSCs alleviated stenotic-kidney fibrosis, but lean-MSC more effectively than obese-MSC. MSC senescence-associated beta-gal activity, and gene expression of p16, p21, and vascular endothelial growth factor correlated with recipient kidney perfusion and tissue injury, linking MSC characteristics with their in-vivo reparative capacity.

Discussion

Human obesity impairs the reparative properties of adipose-tissue-derived MSCs, possibly by inducing cellular senescence. Dysfunction and senescence of the endogenous MSC repair system in patients with obesity may warrant targeting interventions to restore MSC vitality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lean-MSC improves blood pressure and kidney function.
Fig. 2: Lean-MSC improves stenotic kidney (STK) cortical perfusion more than obese-MSC.
Fig. 3: Tissue changes in STKs.
Fig. 4: Peritubular capillary loss and vascular wall remodeling in the stenotic kidneys.
Fig. 5: Oxidative stress in the stenotic kidneys.
Fig. 6: Correlation between MSC senescence, inflammatory and proangiogenic gene expression with renal perfusion and histological changes.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8, https://doi.org/10.3390/cells8080886.

  2. Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017;22:17 https://doi.org/10.1186/s40001-017-0258-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hickson LJ, Eirin A, Lerman LO. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 2016;89:767–78. https://doi.org/10.1016/j.kint.2015.11.023.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ebrahimi B, Eirin A, Li Z, Zhu XY, Zhang X, Lerman A, et al. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis. PLoS One. 2013;8:e67474 https://doi.org/10.1371/journal.pone.0067474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, et al. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 2012;30:1030–41. https://doi.org/10.1002/stem.1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu XY, Urbieta-Caceres V, Krier JD, Textor SC, Lerman A, Lerman LO. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells. 2013;31:117–25. https://doi.org/10.1002/stem.1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou X, Jiang K, Puranik AS, Jordan KL, Tang H, Zhu XY, et al. Targeting murine mesenchymal stem cells to kidney injury molecule-1 improves their therapeutic efficacy in chronic ischemic kidney injury. Stem Cells Transl Med. 2018;7:394–403. https://doi.org/10.1002/sctm.17-0186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JA, McKusick MA, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol. 2017;28:2777–85. https://doi.org/10.1681/asn.2017020151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60. https://doi.org/10.1038/nbt.2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17. https://doi.org/10.1007/978-3-319-48382-5_1

    Article  CAS  PubMed  Google Scholar 

  11. de Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71:332–8. https://doi.org/10.1017/s0029665112000092.

    Article  PubMed  Google Scholar 

  12. Liu Z, Wu KKL, Jiang X, Xu A, Cheng KKY. The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin Sci. 2020;134:315–30. https://doi.org/10.1042/cs20190966.

    Article  CAS  Google Scholar 

  13. Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci. 2016;17, https://doi.org/10.3390/ijms17071164.

  14. Conley SM, Hickson LJ, Kellogg TA, McKenzie T, Heimbach JK, Taner T, et al. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells. Front Cell Dev Biol. 2020;8:197 https://doi.org/10.3389/fcell.2020.00197.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Conley SM, Shook JE, Zhu XY, Eirin A, Jordan KL, Woollard JR, et al. Metabolic syndrome induces release of smaller extracellular vesicles from porcine mesenchymal stem cells. Cell Transplant. 2019;28:1271–8. https://doi.org/10.1177/0963689719860840.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eirin A, Zhu XY, Woollard JR, Tang H, Dasari S, Lerman A, et al. Metabolic syndrome interferes with packaging of proteins within porcine mesenchymal stem cell-derived extracellular vesicles. Stem Cells Transl Med. 2019;8:430–40. https://doi.org/10.1002/sctm.18-0171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pawar AS, Eirin A, Krier JD, Woollard JR, Zhu XY, Lerman A, et al. Alterations in genetic and protein content of swine adipose tissue-derived mesenchymal stem cells in the metabolic syndrome. Stem Cell Res. 2019;37:101423 https://doi.org/10.1016/j.scr.2019.101423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu XY, Ma S, Eirin A, Woollard JR, Hickson LJ, Sun D, et al. Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Transl Med. 2016;5:893–900. https://doi.org/10.5966/sctm.2015-0240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang K, Tang H, Mishra PK, Macura SI, Lerman LO. Measurement of murine single-kidney glomerular filtration rate using dynamic contrast-enhanced MRI. Magn Reson Med. 2018;79:2935–43. https://doi.org/10.1002/mrm.26955.

    Article  PubMed  Google Scholar 

  20. Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, et al. Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology. 2017;283:77–86. https://doi.org/10.1148/radiol.2016160566.

    Article  PubMed  Google Scholar 

  21. Bongoni AK, Lu B, Salvaris EJ, Roberts V, Fang D, McRae JL, et al. Overexpression of human CD55 and CD59 or treatment with human CD55 protects against renal ischemia-reperfusion injury in mice. J Immunol. 2017;198:4837–45. https://doi.org/10.4049/jimmunol.1601943.

    Article  CAS  PubMed  Google Scholar 

  22. Pierpont YN, Dinh TP, Salas RE, Johnson EL, Wright TG, Robson MC, et al. Obesity and surgical wound healing: a current review. ISRN Obes. 2014;2014:638936 https://doi.org/10.1155/2014/638936.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Models Mech. 2015;8:281–93. https://doi.org/10.1242/dmm.017699.

    Article  CAS  Google Scholar 

  24. Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res Therapy. 2017;8:273 https://doi.org/10.1186/s13287-017-0727-7.

    Article  CAS  Google Scholar 

  25. Saad A, Zhu XY, Herrmann S, Hickson LJ, Tang H, Dietz AB, et al. Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Res Ther. 2016;7:128 https://doi.org/10.1186/s13287-016-0389-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oliva-Olivera W, Coín-Aragüez L, Lhamyani S, Clemente-Postigo M, Alcaide Torres J, Bernal-Lopez MR, et al. Adipogenic impairment of adipose tissue-derived mesenchymal stem cells in subjects with metabolic syndrome: possible protective role of FGF2. J Clin Endocrinol Metab. 2017;102:478–87. https://doi.org/10.1210/jc.2016-2256.

    Article  PubMed  Google Scholar 

  27. Meng Y, Eirin A, Zhu XY, Tang H, Chanana P, Lerman A, et al. Obesity-induced mitochondrial dysfunction in porcine adipose tissue-derived mesenchymal stem cells. J Cell Physiol. 2018;233:5926–36. https://doi.org/10.1002/jcp.26402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meng Y, Eirin A, Zhu XY, Tang H, Chanana P, Lerman A, et al. The metabolic syndrome alters the miRNA signature of porcine adipose tissue-derived mesenchymal stem cells. Cytometry A. 2018;93:93–103. https://doi.org/10.1002/cyto.a.23165.

    Article  CAS  PubMed  Google Scholar 

  29. Aghajani Nargesi A, Zhu XY, Hickson LJ, Conley SM, van Wijnen AJ, Lerman LO, et al. Metabolic syndrome modulates protein import into the mitochondria of porcine mesenchymal stem cells. Stem Cell Rev Rep. 2019;15:427–38. https://doi.org/10.1007/s12015-018-9855-4.

    Article  CAS  PubMed  Google Scholar 

  30. Nadeau S, Cheng A, Colmegna I, Rodier F. Quantifying senescence-associated phenotypes in primary multipotent mesenchymal stromal cell cultures. Methods Mol Biol. 2019;2045:93–105. https://doi.org/10.1007/7651_2019_217.

    Article  CAS  PubMed  Google Scholar 

  31. Liu JY, Souroullas GP, Diekman BO, Krishnamurthy J, Hall BM, Sorrentino JA, et al. Cells exhibiting strong p16 (INK4a) promoter activation in vivo display features of senescence. Proc Natl Acad Sci USA. 2019;116:2603–11. https://doi.org/10.1073/pnas.1818313116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim SR, Puranik AS, Jiang K, Chen XJ, Zhu XY, Taylor I, et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J Am Soc Nephrol. 2021;32:1987–2004. https://doi.org/10.1681/asn.2020091373.

    Article  CAS  PubMed  Google Scholar 

  33. Kim SR, Zou X, Tang H, Puranik AS, Abumoawad AM, Zhu XY, et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells. J Cell Physiol. 2021;236:1332–44. https://doi.org/10.1002/jcp.29940.

    Article  CAS  PubMed  Google Scholar 

  34. Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol. 2017;13:77–89. https://doi.org/10.1038/nrneph.2016.183.

    Article  CAS  PubMed  Google Scholar 

  36. Chade AR, Tullos NA, Harvey TW, Mahdi F, Bidwell GL 3rd. Renal therapeutic angiogenesis using a bioengineered polymer-stabilized vascular endothelial growth factor construct. J Am Soc Nephrol. 2016;27:1741–52. https://doi.org/10.1681/asn.2015040346.

    Article  CAS  PubMed  Google Scholar 

  37. Suvakov S, Cubro H, White WM, Butler Tobah YS, Weissgerber TL, Joradn KL, et al. Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biol Sex Differ. 2019;10:49 https://doi.org/10.1186/s13293-019-0263-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lerman LO, Textor SC, Grande JP. Mechanisms of tissue injury in renal artery stenosis: ischemia and beyond. Prog Cardiovasc Dis. 2009;52:196–203. https://doi.org/10.1016/j.pcad.2009.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Textor SC, Lerman LO. The role of hypoxia in ischemic chronic kidney disease. Semin Nephrol. 2019;39:589–98. https://doi.org/10.1016/j.semnephrol.2019.10.008.

    Article  CAS  PubMed  Google Scholar 

  40. Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int. 2017;92:114–24. https://doi.org/10.1016/j.kint.2016.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen XJ, Zhang X, Jiang K, Krier JD, Zhu XY, Conley S, et al. Adjunctive mesenchymal stem/stromal cells augment microvascular function in poststenotic kidneys treated with low-energy shockwave therapy. J Cell Physiol. 2020;235:9806–18. https://doi.org/10.1002/jcp.29794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eirin A, Zhang X, Zhu XY, Tang H, Jordan KL, Grande JP, et al. Renal vein cytokine release as an index of renal parenchymal inflammation in chronic experimental renal artery stenosis. Nephrol Dial Transplant. 2014;29:274–82. https://doi.org/10.1093/ndt/gft305.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Zhu XY, Song T, Zhang L, Eirin A, Conley S, et al. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching. Am J Physiol Renal Physiol. 2021;320:F454–f463. https://doi.org/10.1152/ajprenal.00426.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song T, Eirin A, Zhu XY, Zhao Y, Krier JD, Tang H, et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory T cells to ameliorate chronic kidney injury. Hypertension. 2020;75:1223–32. https://doi.org/10.1161/hypertensionaha.119.14546.

    Article  CAS  PubMed  Google Scholar 

  45. Eirin A, Ferguson CM, Zhu XY, Saadiq I, Tang H, Lerman A, et al. Extracellular vesicles released by adipose tissue-derived mesenchymal stromal/stem cells from obese pigs fail to repair the injured kidney. Stem Cell Res. 2020;47:101877 https://doi.org/10.1016/j.scr.2020.101877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saleem M, Saavedra-Sánchez L, Barturen-Larrea P, Gomez JA. The transcription factor Sox6 controls renin expression during renal artery stenosis. Kidney360. 2021. https://doi.org/10.34067/kid.0002792020.

  47. Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 2004;65:510–20. https://doi.org/10.1111/j.1523-1755.2004.00438.x.

    Article  CAS  PubMed  Google Scholar 

  48. Chen XJ, Kim SR, Jiang K, Ferguson C, Tang H, Zhu XY, et al. Renovascular disease induces senescence in renal scattered tubular-like cells and impairs their reparative potency. Hypertension. 2021;77:507–18. https://doi.org/10.1161/hypertensionaha.120.16218.

    Article  CAS  PubMed  Google Scholar 

  49. Kim SR, Jiang K, Ferguson CM, Tang H, Chen XJ, Zhu XY, et al. Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. Am J Physiol Renal Physiol. 2020;318:F1167–f1176. https://doi.org/10.1152/ajprenal.00535.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31:890–6. https://doi.org/10.1016/s0301-472x(03)00110-3.

    Article  PubMed  Google Scholar 

  51. von Bahr L, Batsis I, Moll G, Hagg M, Szakos A, Sundberg B, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30:1575–8. https://doi.org/10.1002/stem.1118.

    Article  CAS  Google Scholar 

  52. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7:14 https://doi.org/10.1186/1471-2121-7-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NK: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript; SMC: provision of study material, collection and assembly of data; XZ: conception and design, provision of study material, collection and assembly of data; IMS: provisional of study material, collection and assembly of data, YL: collection and assembly of data, data analysis an interpretation; JDK: administrative support, provisional of study material, collection and assembly of data; CMF: administrative support, provisional of study material, collection and assembly of data; KLJ: provisional of study material, collection and assembly of data; HT: provisional of study material, collection and assembly of data; AL: data interpretation, manuscript writing; LOL: conception and design, financial support, administrative support, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript

Corresponding author

Correspondence to Lilach O. Lerman.

Ethics declarations

Competing interests

This study was partly supported by NIH grant numbers DK120292, DK122734, and AG062104. LOL is an advisor to AstraZeneca, CureSpec, and Butterfly Biosciences. All authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klomjit, N., Conley, S.M., Zhu, X.Y. et al. Effects of obesity on reparative function of human adipose tissue-derived mesenchymal stem cells on ischemic murine kidneys. Int J Obes 46, 1222–1233 (2022). https://doi.org/10.1038/s41366-022-01103-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01103-5

This article is cited by

Search

Quick links