Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Gut microbiota mediates the alleviative effect of polar lipids-enriched milk fat globule membrane on obesity-induced glucose metabolism disorders in peripheral tissues in rat dams

Abstract

Background

Obesity during pregnancy and lactation not only increases the incidence of metabolic disorders and gestational diabetes in mothers, but also programs adiposity and related metabolic diseases in offspring. The aim of this study was to investigate the effects of milk polar lipids on gut microbiota and glucose metabolism in high-fat diet (HFD)-fed rat dams.

Methods

Sprague Dawley (SD) female rats were fed a HFD for 8 weeks to induce obesity, followed by HFD with or without oral administration of polar lipids-enriched milk fat globule membrane (MFGM-PL) at 400 mg/kg BW during pregnancy and lactation. At the end of lactation, fresh fecal samples of dams were collected, the gut microbiota was assessed, and the insulin-signaling protein expression in peripheral tissues (adipose tissue, liver and skeletal muscle) were measured.

Results

MFGM-PL supplementation attenuated body weight gain, ameliorated serum lipid profiles and improved insulin sensitivity in obese dams at the end of lactation. 16 S rDNA sequencing revealed that MFGM-PL increased the community richness and diversity of gut microbiota. The composition of gut microbiota was also changed after MFGM-PL supplementation as shown by an increase in the ratio of Bacteroidetes/Firmicutes and the relative abundance of Akkermansia, as well as a decrease in the relative abundance of Ruminococcaceae. The functional prediction of microbial communities by PICRUSt analysis showed that there were 7 KEGG pathways related to carbohydrate metabolism changed after MFGM-PL supplementation to HFD dams, including glycolysis/gluconeogenesis and insulin signaling pathway. Furthermore, MFGM-PL improved insulin signaling in the peripheral tissues including liver, adipose tissue and skeletal muscle.

Conclusions

MFGM-PL supplementation during pregnancy and lactation improves the glucose metabolism disorders in HFD-induced obese dams, which may be linked to the regulation of gut microbiota induced by MFGM-PL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of MFGM-PL supplementation during pregnancy and lactation on glucose tolerance and insulin sensitivity in HFD-fed rat dams.
Fig. 2: MFGM-PL supplementation during pregnancy and lactation improved the diversity of gut microbiota in HFD-fed rat dams.
Fig. 3: MFGM-PL supplementation during pregnancy and lactation modulated the composition of gut microbiota in HFD-fed rat dams.
Fig. 4: Comparison of microbial function prediction.
Fig. 5: Effects of MFGM-PL supplementation during pregnancy and lactation on insulin signaling in liver, adipose tissue and skeletal muscle of HFD-fed rat dams.

Similar content being viewed by others

References

  1. Howie GJ, Sloboda DM, Reynolds CM, Vickers MH. Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: same metabolic phenotype, different developmental pathways? J Nutr Metab. 2013;2013:517384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ruager-Martin R, Hyde MJ, Modi N. Maternal obesity and infant outcomes. Early Hum Dev. 2010;86:715–22.

    Article  PubMed  Google Scholar 

  3. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30:2070–6.

    Article  PubMed  Google Scholar 

  4. Gaillard R, Durmus B, Hofman A, Mackenbach JP, Steegers EA, Jaddoe VW. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Obesity (Silver Spring). 2013;21:1046–55.

    Article  Google Scholar 

  5. Chang E, Hafner H, Varghese M, Griffin C, Clemente J, Islam M, et al. Programming effects of maternal and gestational obesity on offspring metabolism and metabolic inflammation. Sci Rep. 2019;9:16027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Symonds ME, Mendez MA, Meltzer HM, Koletzko B, Godfrey K, Forsyth S, et al. Early life nutritional programming of obesity: mother–child cohort studies. Ann Nutr Metab. 2013;62:137–45.

    Article  CAS  PubMed  Google Scholar 

  7. Torloni MR, Betran AP, Horta BL, Nakamura MU, Atallah AN, Moron AF, et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev. 2009;10:194–203.

    Article  CAS  PubMed  Google Scholar 

  8. Herring SJ, Oken E. Obesity and diabetes in mothers and their children: can we stop the intergenerational cycle? Curr Diab Rep. 2011;11:20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol. 2009;156:885–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan H, Yang W, Zhou F, Li X, Pan Q, Shen Z, et al. Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes. 2019;68:291–304.

    Article  CAS  PubMed  Google Scholar 

  12. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology. 2005;146:1473–81.

    Article  CAS  PubMed  Google Scholar 

  13. Greiner T, Backhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab. 2011;22:117–23.

    Article  CAS  PubMed  Google Scholar 

  14. Mahizir D, Briffa JF, Wood JL, Anevska K, Hill-Yardin EL, Jefferies AJ, et al. Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes. FASEB J. 2020;34:1728–44.

    Article  CAS  PubMed  Google Scholar 

  15. Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Clercq NC, Groen AK, Romijn JA, Nieuwdorp M. Gut microbiota in obesity and undernutrition. Adv Nutr. 2016;7:1080–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes. 2016;65:2214–23.

    Article  CAS  PubMed  Google Scholar 

  18. Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Van, et al. Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J. 2008;18:436–57.

    Article  CAS  Google Scholar 

  19. Li F, Wu SS, Berseth CL, Harris CL, Richards JD, Wampler JL, et al. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. J Pediatr. 2019;215:24–31.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang D, Wen J, Zhou J, Cai W, Qian L. Milk fat globule membrane ameliorates necrotizing enterocolitis in neonatal rats and suppresses lipopolysaccharide-induced inflammatory response in IEC-6 enterocytes. JPEN J Parenter Enteral Nutr. 2019;43:863–73.

    Article  CAS  PubMed  Google Scholar 

  21. Timby N, Hernell O, Vaarala O, Melin M, Lonnerdal B, Domellof M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr. 2015;60:384–9.

    Article  CAS  PubMed  Google Scholar 

  22. Timby N, Lonnerdal B, Hernell O, Domellof M. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res. 2014;76:394–400.

    Article  CAS  PubMed  Google Scholar 

  23. Millar CL, Jiang C, Norris GH, Garcia C, Seibel S, Anto L, et al. Cow’s milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J Nutr Biochem. 2020;79:108351.

    Article  CAS  PubMed  Google Scholar 

  24. Li T, Gao J, Du M, Mao X. Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. J Funct Foods. 2018;47:56–65.

    Article  CAS  Google Scholar 

  25. Gong H, Yuan Q, Pang J, Li T, Li J, Zhan B, et al. Dietary milk fat globule membrane restores decreased intestinal mucosal barrier development and alterations of intestinal flora in infant formula-fed rat pups. Mol Nutr Food Res. 2020;64:2000232.

  26. Yuan Q, Zhan B, Du M, Chang R, Li T, Mao X. Dietary milk fat globule membrane regulates JNK and PI3K/Akt pathway and ameliorates type 2 diabetes in mice induced by a high-fat diet and streptozotocin. J Funct Foods. 2019;60:103435.

    Article  CAS  Google Scholar 

  27. Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J. 2020;34:4619–34.

    Article  CAS  PubMed  Google Scholar 

  28. Hari S, Ochiai R, Shioya Y, Katsuragi Y. Safety evaluation of the consumption of high dose milk fat globule membrane in healthy adults: a double-blind, randomized controlled trial with parallel group design. Biosci Biotechnol Biochem. 2015;79:1172–7.

    Article  CAS  PubMed  Google Scholar 

  29. Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 2003;28:916–31.

    Article  CAS  PubMed  Google Scholar 

  30. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol. 2011;18:139–43.

    Article  CAS  Google Scholar 

  31. Beals E, Kamita SG, Sacchi R, Demmer E, Rivera N, Rogers-Soeder TS, et al. Addition of milk fat globule membrane-enriched supplement to a high-fat meal attenuates insulin secretion and induction of soluble epoxide hydrolase gene expression in the postprandial state in overweight and obese subjects. J Nutr Sci. 2019;8:e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut. 2020;69:487–501.

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe S, Takahashi T, Tanaka L, Haruta Y, Shiota M, Hosokawa M, et al. The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-A). J Funct Foods. 2011;3:313–20.

    Article  CAS  Google Scholar 

  34. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.

    Article  CAS  PubMed  Google Scholar 

  37. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104:83–92.

    Article  CAS  PubMed  Google Scholar 

  40. Liu D, Huang J, Luo Y, Wen B, Wu W, Zeng H, et al. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J Agric Food Chem. 2019;67:13589–604.

    Article  CAS  PubMed  Google Scholar 

  41. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–24.

    Article  CAS  PubMed  Google Scholar 

  42. Sundekilde UK, Yde CC, Honore AH, Caverly Rae JM, Burns FR, Mukerji P, et al. An Integrated multi-omics analysis defines key pathway alterations in a diet-induced obesity mouse model. Metabolites. 2020;10:80.

    Article  CAS  PubMed Central  Google Scholar 

  43. Thomaz FS, Tomsett KI, Panchal SK, Worrall S, Dekker Nitert M. Wasabi supplementation alters the composition of the gut microbiota of diet-induced obese rats. J Funct Foods. 2020;67:103868.

    Article  CAS  Google Scholar 

  44. Norris GH, Milard M, Michalski MC, Blesso CN. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem. 2019;73:108224.

    Article  CAS  PubMed  Google Scholar 

  45. Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog. 2008;4:e1000073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li M, Yang X, Zhang G, Su D, Lei L, Li R. ANGPTL4 participates in gestational diabetes mellitus via regulating Akt pathway. Eur Rev Med Pharmaco. 2018;22:5056–62.

    CAS  Google Scholar 

  47. Musial B, Vaughan OR, Fernandez-Twinn DS, Voshol P, Ozanne SE, Fowden AL, et al. A Western-style obesogenic diet alters maternal metabolic physiology with consequences for fetal nutrient acquisition in mice. J Physiol. 2017;595:4875–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bonnaud S, Niaudet C, Legoux F, Corre I, Delpon G, Saulquin X, et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res. 2010;70:9905–15.

    Article  CAS  PubMed  Google Scholar 

  49. Gomez-Munoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, Gonzalez M, et al. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett. 2005;579:3744–50.

    Article  CAS  PubMed  Google Scholar 

  50. Lappas M. GSK3beta is increased in adipose tissue and skeletal muscle from women with gestational diabetes where it regulates the inflammatory response. PLoS One. 2014;9:e115854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Xu Y, Jin B, Sun L, Yang H, Cao X, Zhang G. The expression of FoxO1 in placenta and omental adipose tissue of gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122:287–94.

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen-Ngo C, Jayabalan N, Salomon C, Lappas M. Molecular pathways disrupted by gestational diabetes mellitus. J Mol Endocrinol. 2019;63:R51–72.

    Article  CAS  PubMed  Google Scholar 

  53. Musial B, Fernandez-Twinn DS, Duque-Guimaraes D, Carr SK, Fowden AL, Ozanne SE, et al. Exercise alters the molecular pathways of insulin signaling and lipid handling in maternal tissues of obese pregnant mice. Physiol Rep. 2019;7:e14202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hui H, Tang G, Go VL. Hypoglycemic herbs and their action mechanisms. Chin Med. 2009;4:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Janssen AW, Kersten S. The role of the gut microbiota in metabolic health. FASEB J. 2015;29:3111–23.

    Article  CAS  PubMed  Google Scholar 

  56. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1.

    Article  CAS  PubMed  Google Scholar 

  57. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang X, Wu Y, Ye H, Feng C, Han D, Tao S, et al. Dietary milk fat globule membrane supplementation during late gestation increased the growth of neonatal piglets by improving their plasma parameters, intestinal barriers, and fecal microbiota. RSC Advances. 2020;10:16987–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31871806), and the Beijing Dairy Industry Innovation Team (BAIC06-2021).

Author information

Authors and Affiliations

Authors

Contributions

TGL and XYM designed the study; TGL, QCY and HG conducted the experiments and statistical analyses; TGL and XYM wrote the manuscript; MD and XYM reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueying Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Yuan, Q., Gong, H. et al. Gut microbiota mediates the alleviative effect of polar lipids-enriched milk fat globule membrane on obesity-induced glucose metabolism disorders in peripheral tissues in rat dams. Int J Obes 46, 793–801 (2022). https://doi.org/10.1038/s41366-021-01029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-01029-4

Search

Quick links