Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PAF signaling plays a role in obesity-induced adipose tissue remodeling

Abstract

Background/objectives

Platelet-activating factor receptor (PAFR) activation controls adipose tissue (AT) expansion in animal models. Our objective was twofold: (i) to check whether PAFR signaling is involved in human obesity and (ii) investigate the PAF pathway role in hematopoietic or non-hematopoietic cells to control adipocyte size.

Materials/Subjects and methods

Clinical parameters and adipose tissue gene expression were evaluated in subjects with obesity. Bone marrow (BM) transplantation from wild-type (WT) or PAFR−/− mice was performed to obtain chimeric PAFR-deficient mice predominantly in hematopoietic or non-hematopoietic-derived cells. A high carbohydrate diet (HC) was used to induce AT remodeling and evaluate in which cell compartment PAFR signaling modulates it. Also, 3T3-L1 cells were treated with PAF to evaluate fat accumulation and the expression of genes related to it.

Results

PAFR expression in omental AT from humans with obesity was negatively correlated to different corpulence parameters and more expressed in the stromal vascular fraction than adipocytes. Total PAFR−/− increased adiposity compared with WT independent of diet-induced obesity. Differently, WT mice receiving PAFR−/−-BM exhibited similar adiposity gain as WT chimeras. PAFR−/− mice receiving WT-BM showed comparable augmentation in adiposity as total PAFR−/− mice, demonstrating that PAFR signaling modulates adipose tissue expansion through non-hematopoietic cells. Indeed, the PAF treatment in 3T3-L1 adipocytes reduced fat accumulation and expression of adipogenic genes.

Conclusions

Therefore, decreased PAFR signaling may favor an AT accumulation in humans and animal models. Importantly, PAFR signaling, mainly in non-hematopoietic cells, especially in adipocytes, appears to play a significant role in regulating diet-induced AT expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PAFR expression in human WAT, adipocytes, and SVF.
Fig. 2: Effect of PAF signaling predominantly in hematopoietic or non-hematopoietic-derived cells in the adipose tissue expansion.
Fig. 3: Inflammatory alterations in the chimera groups.
Fig. 4: Effect of PAF on triglyceride accumulation and differentiation of 3T3-L1 fibroblasts.
Fig. 5: The summary of PAF signaling effect on adipose tissue in obesity.

Similar content being viewed by others

References

  1. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  2. Belkina AC, Denis GV. Obesity genes and insulin resistance. Curr Opin Endocrinol Diabetes Obes. 2010;17:472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clement K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Investig. 2019;129:4032–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ye J, McGuinness OP. Inflammation during obesity is not all bad: evidence from animal and human studies. Am J Physiol Endocrinol Metab. 2013;304:E466–77.

    Article  CAS  PubMed  Google Scholar 

  5. Asterholm IW, Rutkowski JM, Fujikawa T, Cho YR, Fukuda M, Tao C, et al. Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia. 2014;57:1209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Menezes-Garcia Z, Oliveira MC, Lima RL, Soriani FM, Cisalpino D, Botion LM, et al. Lack of platelet-activating factor receptor protects mice against diet-induced adipose inflammation and insulin-resistance despite fat pad expansion. Obesity. 2014;22:663–72.

    Article  CAS  PubMed  Google Scholar 

  7. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519:242–6.

    Article  CAS  PubMed  Google Scholar 

  8. Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8:75–9.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia MC, Wernstedt I, Berndtsson A, Enge M, Bell M, Hultgren O, et al. Mature-onset obesity in interleukin-1 receptor I knockout mice. Diabetes. 2006;55:1205–13.

    Article  CAS  PubMed  Google Scholar 

  10. Xu H, Hirosumi J, Uysal KT, Guler AD, Hotamisligil GS. Exclusive action of transmembrane TNF alpha in adipose tissue leads to reduced adipose mass and local but not systemic insulin resistance. Endocrinology. 2002;143:1502–11.

    Article  CAS  PubMed  Google Scholar 

  11. Martins LB, Oliveira MC, Menezes-Garcia Z, Rodrigues DF, Lana JP, Vieira LQ, et al. Paradoxical role of tumor necrosis factor on metabolic dysfunction and adipose tissue expansion in mice. Nutrition. 2018;50:1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sugatani J, Sadamitsu S, Yamaguchi M, Yamazaki Y, Higa R, Hattori Y, et al. Antiobese function of platelet-activating factor: increased adiposity in platelet-activating factor receptor-deficient mice with age. FASEB J. 2014;28:440–52.

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi M, Matsui M, Higa R, Yamazaki Y, Ikari A, Miyake M, et al. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation. Biochem Pharmacol. 2015;93:482–95.

    Article  CAS  PubMed  Google Scholar 

  14. Venable ME, Zimmerman GA, McIntyre TM, Prescott SM. Platelet-activating factor: a phospholipid autacoid with diverse actions. J Lipid Res. 1993;34:691–702.

    Article  CAS  PubMed  Google Scholar 

  15. Rios FJ, Koga MM, Ferracini M, Jancar S. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS ONE. 2012;7:e36632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kajiwara N, Sasaki T, Bradding P, Cruse G, Sagara H, Ohmori K, et al. Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol. 2010;125:1137–1145 e6.

    Article  CAS  PubMed  Google Scholar 

  17. Montrucchio G, Lupia E, Battaglia E, Del Sorbo L, Boccellino M, Biancone L, et al. Platelet-activating factor enhances vascular endothelial growth factor-induced endothelial cell motility and neoangiogenesis in a murine matrigel model. Arterioscler Thromb Vasc Biol. 2000;20:80–8.

    Article  CAS  PubMed  Google Scholar 

  18. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM. Platelet-activating factor and related lipid mediators. Annu Rev Biochem. 2000;69:419–45.

    Article  CAS  PubMed  Google Scholar 

  19. Ishii S, Shimizu T. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res. 2000;39:41–82.

    Article  CAS  PubMed  Google Scholar 

  20. Camussi G, Tetta C, Baglioni C. The role of platelet-activating factor in inflammation. Clin Immunol Immunopathol. 1990;57:331–8.

    Article  CAS  PubMed  Google Scholar 

  21. Triggiani M, Schleimer RP, Warner JA, Chilton FH. Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. J Immunol. 1991;147:660–6.

    Article  CAS  PubMed  Google Scholar 

  22. Thivierge M, Parent JL, Stankova J, Rola-Pleszczynski M. Modulation of human platelet-activating factor receptor gene expression by protein kinase C activation. J Immunol. 1996;157:4681–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kurano M, Darestani SG, Shinnakasu A, Yamamoto K, Dochi Y, Uemura K, et al. mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes. Diabetes Res Clin Pract. 2018;136:124–33.

    Article  CAS  PubMed  Google Scholar 

  24. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59:2817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aron-Wisnewsky J, Julia Z, Poitou C, Bouillot JL, Basdevant A, Chapman MJ, et al. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J Clin Endocrinol Metab. 2011;96:1151–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, et al. Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med. 1998;187:1779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castor MG, Rezende B, Resende CB, Alessandri AL, Fagundes CT, Sousa LP, et al. The CCL3/macrophage inflammatory protein-1alpha-binding protein evasin-1 protects from graft-versus-host disease but does not modify graft-versus-leukemia in mice. J Immunol. 2010;184:2646–54.

    Article  CAS  PubMed  Google Scholar 

  28. Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem. 1964;239:375–80.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 2005;1:93–106.

    Article  CAS  PubMed  Google Scholar 

  30. Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem. 2012;425:88–90.

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Zhao X, Feng X, Liu X, Deng C, Hu CH. Berberine alleviates olanzapine-induced adipogenesis via the AMPKalpha-SREBP Pathway in 3T3-L1 cells. Int J Mol Sci. 2016;17:1865.

    Article  PubMed Central  Google Scholar 

  32. Mehra A, Macdonald I, Pillay TS. Variability in 3T3-L1 adipocyte differentiation depending on cell culture dish. Anal Biochem. 2007;362:281–3.

    Article  CAS  PubMed  Google Scholar 

  33. Oliveira MC, Menezes-Garcia Z, Henriques MC, Soriani FM, Pinho V, Faria AM, et al. Acute and sustained inflammation and metabolic dysfunction induced by high refined carbohydrate-containing diet in mice. Obesity. 2013;21:E396–406.

    Article  CAS  PubMed  Google Scholar 

  34. Yost CC, Weyrich AS, Zimmerman GA. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie. 2010;92:692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li W, McIntyre TM. Platelet-activating factor receptor affects food intake and body weight. Genes Dis. 2015;2:255–60.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lacerda DR, Soares DD, Costa KA, Nunes-Silva A, Rodrigues DF, Sabino JL, et al. Mechanisms underlying fat pad remodeling induced by fasting: role of PAF receptor. Nutrition. 2020;71:110616.

    Article  CAS  PubMed  Google Scholar 

  37. Caer C, Rouault C, Le Roy T, Poitou C, Aron-Wisnewsky J, Torcivia A, et al. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci Rep. 2017;7:3000.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE. 2015;10:e0121971.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kudolo GB, Bressler P, DeFronzo RA, Plasma PAF. acetylhydrolase in non-insulin dependent diabetes mellitus and obesity: effect of hyperinsulinemia and lovastatin treatment. J Lipid Mediat Cell Signal. 1997;17:97–113.

    Article  CAS  PubMed  Google Scholar 

  40. Okada T, Miyashita M, Kuromori Y, Iwata F, Harada K, Hattori H. Platelet-activating factor acetylhydrolase concentration in children with abdominal obesity. Arterioscler Thromb Vasc Biol. 2006;26:e40–1.

    Article  CAS  PubMed  Google Scholar 

  41. Tzotzas T, Filippatos TD, Triantos A, Bruckert E, Tselepis AD, Kiortsis DN. Effects of a low-calorie diet associated with weight loss on lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in healthy obese women. Nutr Metab Cardiovasc Dis. 2008;18:477–82.

    Article  CAS  PubMed  Google Scholar 

  42. Campo S, Sardo MA, Bitto A, Bonaiuto A, Trimarchi G, Bonaiuto M, et al. Platelet-activating factor acetylhydrolase is not associated with carotid intima-media thickness in hypercholesterolemic Sicilian individuals. Clin Chem. 2004;50:2077–82.

    Article  CAS  PubMed  Google Scholar 

  43. de Castro SH, Faria Neto HC, Gomes MB. Platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with type 1 diabetes mellitus. Arq Bras Cardiol. 2007;88:179–84.

    Article  PubMed  Google Scholar 

  44. Pamir N, McMillen TS, Kaiyala KJ, Schwartz MW, LeBoeuf RC. Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology. 2009;150:4124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiao P, Feng B, Ma J, Nie Y, Paul E, Li Y, et al. Constitutive activation of IKKbeta in adipose tissue prevents diet-induced obesity in mice. Endocrinology. 2012;153:154–65.

    Article  CAS  PubMed  Google Scholar 

  46. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Investig. 2010;120:3466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahmed M, Gaffen SL. IL-17 inhibits adipogenesis in part via C/EBPalpha, PPARgamma and Kruppel-like factors. Cytokine. 2013;61:898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Torti FM, Dieckmann B, Beutler B, Cerami A, Ringold GM. A macrophage factor inhibits adipocyte gene expression: an in vitro model of cachexia. Science. 1985;229:867–9.

    Article  CAS  PubMed  Google Scholar 

  49. Keay S, Grossberg SE. Interferon inhibits the conversion of 3T3-L1 mouse fibroblasts into adipocytes. Proc Natl Acad Sci USA. 1980;77:4099–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sohn JH, Kim JI, Jeon YG, Park J, Kim JB. Effects of three thiazolidinediones on metabolic regulation and cold-induced thermogenesis. Mol Cells. 2018;41:900–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care. 2004;27:1660–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Comité français d’Evaluation de la Coopération Universitaire et Scientifique avec le Brésil (COFECUB) grant no 88887.130206/2017-01, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), National Council for Scientific and Technological Development (CNPq/Brazil) by financial support and National Agency of Research (Captor program). Clinical investigation was performed at the Human Nutrition Research Center (CRNH Ile de France), Pitié-Salpêtrière Hospital.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AVMF; Project Administration, KAC; Methodology, AVMF, CR, GM, VPS, BMR, and AMS; Investigation, KAC, DRL, ALMS, MCO, ZMG, and FLBM; Resources, AVMF, MMT, AMS and KC; Writing – Original Draft, KAC, ALMS, and DRL; Visualization, ALMS, LBM, and MCO; Writing – Review & Editing, AVMF, GM, ALMS, MCO, AMS, KC and CR; Funding Acquisition, AVMF and KC; Guarantor of this work, AVMF.

Corresponding author

Correspondence to Adaliene V. M. Ferreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, K.A., Lacerda, D.R., Silveira, A.L.M. et al. PAF signaling plays a role in obesity-induced adipose tissue remodeling. Int J Obes 46, 68–76 (2022). https://doi.org/10.1038/s41366-021-00961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00961-9

Search

Quick links