Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Murine model of left ventricular diastolic dysfunction and electro-mechanical uncoupling following high-fat diet

Abstract

Background/Objectives

It is well established that obesity is an independent risk factor for cardiac death. In particular various cardiac alterations have been described in obese patients such as long QT on ECG, impaired diastolic filling of the left ventricle (LV), and all-type arrhythmias. In the present study, the above alterations were all reproduced in a mouse model of fat diet-induced obesity.

Animals/Methods

In C57BL6 mice fed on a high fat (n = 20, HF-group) or standard diet (n = 20, C-group) for 13 weeks, balanced by sex and age, we examined heart morphology and function by high-frequency ultrasounds and electric activity by surface ECG. Besides, the autonomic sympathovagal balance (heart-rate variability) and the arrhythmogenic susceptibility to adrenergic challenge (i.p. isoproterenol) were compared in the two groups, as well as glucose tolerance (i.p. glucose test) and liver steatosis (ultrasounds).

Results

Body weight in HF-group exceeded C-group at the end of the experiment (+28% p < 0.01). An abnormal ventricular repolarization (long QTc on ECG) together with impaired LV filling rate and increased LV mass was found in HF-group as compared to C. Moreover, HF-group showed higher heart rate, unbalanced autonomic control with adrenergic prevalence and a greater susceptibility to develop rhythm disturbances under adrenergic challenge (i.p. isoprenaline). Impaired glucose tolerance and higher liver fat accumulation were also found in HF mice compared to C.

Conclusions

The described murine model of 13 weeks on HF diet, well reproduced the cardiovascular and metabolic disorders reported in clinical obesity, suggesting its potential utility as translational mean suitable for testing new pharmaco-therapeutic approaches to the treatment of obesity and its comorbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118:1723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 Years. N Engl J Med. 2017;377:13–27.

    Article  PubMed  Google Scholar 

  3. Leopold JA. Obesity-related cardiomyopathy is an adipocyte-mediated paracrine disease. Trends Cardiovasc Med. 2015;25:127–8.

    Article  CAS  PubMed  Google Scholar 

  4. Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118:1786–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118:1752–70.

    Article  CAS  PubMed  Google Scholar 

  6. Li W, Bai Y, Sun K, Xue H, Wang Y, Song X, et al. Patients with metabolic syndrome have prolonged corrected QT interval (QTc). Clin Cardiol. 2009;32:E93–E9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ramirez AH, Schildcrout JS, Blakemore DL, Masys DR, Pulley JM, Basford MA, et al. Modulators of normal electrocardiographic intervals identified in a large electronic medical record. Heart Rhythm. 2011;8:271–7.

    Article  PubMed  Google Scholar 

  8. Wang TJ, Parise H, Levy D, D’Agostino RB Sr, Wolf PA, Vasan RS. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292:2471–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tedrow UB, Conen D, Ridker PM, Cook NR, Koplan BA, Manson JE. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J Am Coll Cardiol. 2010;55:2319–27.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huxley RR, Lopez FL, Folsom AR, Agarwal SK, Loehr LR, Soliman EZ, et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011;123:1501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. López-Jiménez F, Cortés-Bergoderi M. Obesity and the heart. Rev Esp Cardiol. 2011;64:140–9.

    Article  PubMed  Google Scholar 

  12. Scherer PE, Hill JA. Obesity, diabetes, and cardiovascular diseases: a compendium. Circ Res. 2016;118:1703–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006;47:2357–63.

    Article  PubMed  Google Scholar 

  14. Raher MJ, Thibault HB, Buys ES, Kuruppu D, Shimizu N, Brownell AL, et al. A short duration of high-fat diet induces insulin resistance and predisposes to adverse left ventricular remodeling after pressure overload. Am J Physiol Heart Circ Physiol. 2008;295:H2495–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brainard RE, Watson LJ, Demartino AM, Brittian KR, Readnower RD, Boakye AA, et al. High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure. PLoS ONE. 2013;8:e83174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Calligaris SD, Lecanda M, Solis F, Ezquer M, Gutierrez J, Brandan E, et al. Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy. PLoS ONE. 2013;8:e60931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carbone S, Mauro AG, Mezzaroma E, Kraskauskas D, Marchetti C, Buzzetti R, et al. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice. Int J Cardiol. 2015;198:66–9.

    Article  PubMed  Google Scholar 

  18. Ternacle J, Wan F, Sawaki D, Surenaud M, Pini M, Mercedes R, et al. Short-term high-fat diet compromises myocardial function: a radial strain rate imaging study. Eur Heart J Cardiovasc Imaging. 2017;18:1283–91.

    Article  PubMed  Google Scholar 

  19. Huang H, Amin V, Gurin M, Wan E, Thorp E, Homma S, et al. Diet-induced obesity causes long QT and reduces transcription of voltage-gated potassium channels. J Mol Cell Cardiol. 2013;59:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang F, Hartnett S, Sample A, Schnack S, Li Y. High fat diet induced alterations of atrial electrical activities in mice. Am J Cardiovasc Dis. 2016;6:1–9.

    PubMed  PubMed Central  Google Scholar 

  21. Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemèle EJ. Long term high fat diet treatment: an appropriate approach to study the sex-specificity of the autonomic and cardiovascular responses to obesity in Mice. Front Physiol. 2017;8:32.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mancini M, Prinster A, Annuzzi G, Liuzzi R, Giacco R, Medagli C, et al. Sonographic hepatic-renal ratio as indicator of hepatic steatosis: comparison with (1)H magnetic resonance spectroscopy. Metabolism. 2009;58:1724–30.

    Article  CAS  PubMed  Google Scholar 

  23. Di Lascio N, Kusmic C, Stea F, Lenzarini F, Barsanti C, Leloup A, et al. Longitudinal micro-ultrasound assessment of the ob/ob mouse model: evaluation of cardiovascular, renal and hepatic parameters. Int J Obes (Lond). 2018;42:518–24.

    Article  Google Scholar 

  24. Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol. 1998;274:H747–51.

    CAS  PubMed  Google Scholar 

  25. Baudrie V, Laude D, Elghozi JL. Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice. Am J Physiol Regul Integr Comp Physiol. 2007;292:R904–12.

    Article  CAS  PubMed  Google Scholar 

  26. Gehrmann J, Hammer PE, Maguire CT, Wakimoto H, Triedman JK, Berul CI. Phenotypic screening for heart rate variability in the mouse. Am J Physiol Heart Circ Physiol. 2000;279:H733–40.

    Article  CAS  PubMed  Google Scholar 

  27. Che Y, Wang ZP, Yuan Y, Zhang N, Jin YG, Wan CX, et al. Role of autophagy in a model of obesity: a long-term high fat diet induces cardiac dysfunction. Mol Med Rep. 2018;18:3251–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Omran J, Bostick BP, Chan AK, Alpert MA. Obesity and ventricular repolarization: a comprehensive review. Prog Cardiovasc Dis. 2018;61:124–35.

    Article  PubMed  Google Scholar 

  29. Belardinelli L, Dhalla A, Shryock J. Abnormal left ventricular relaxation in patients with long QT syndrome. Eur Heart J. 2009;30:2813–4.

    Article  PubMed  Google Scholar 

  30. Wilcox JE, Rosenberg J, Vallakati A, Gheorghiade M, Shah SJ. Usefulness of electrocardiographic QT interval to predict left ventricular diastolic dysfunction. Am J Cardiol. 2011;108:1760–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sauer A, Wilcox JE, Andrei AC, Passman R, Goldberger JJ, Shah SJ. Diastolic electromechanical coupling: association of the ECG T-peak to T-end interval with echocardiographic markers of diastolic dysfunction. Circ Arrhythm Electrophysiol. 2012;5:537–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leren IS, Hasselberg NE, Saberniak J, Håland TF, Kongsgård E, Smiseth OA, et al. Cardiac mechanical alterations and genotype specific differences in subjects with long QT syndrome. JACC Cardiovasc Imaging. 2015;8:501–10.

    Article  PubMed  Google Scholar 

  33. Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res. 2017;113:389–98.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Li L, Zhao H, Peng S, Zuo Z. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice. Metabolism. 2015;64:917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sokolova M, Sjaastad I, Louwe MC, Alfsnes K, Aronsen JM, Zhang L, et al. A. NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity. Front Immunol. 2019;10:1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res. 2014;164:323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen S, Shao D, Tomasi LC, Braun A, de Mattos ABM, Choi YS, et al. The effects of fatty acid composition on cardiac hypertrophy and function in mouse models of diet-induced obesity. J Nutr Biochem. 2017;46:137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK, et al. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes. 2005;54:3530–40.

    Article  CAS  PubMed  Google Scholar 

  39. Zahorska-Markiewicz B, Kuagowska E, Kucio C, Klin M. Heart rate variability in obesity. Int J Obes Relat Metab Disord. 1993;17:21–3.

    CAS  PubMed  Google Scholar 

  40. Laitinen T, Lindström J, Eriksson J, Ilanne-Parikka P, Aunola S, Keinänen-Kiukaanniemi S, et al. Cardiovascular autonomic dysfunction is associated with central obesity in persons with impaired glucose tolerance. Diabet Med. 2011;28:699–704.

    Article  CAS  PubMed  Google Scholar 

  41. Rodríguez-Colón SM, Bixler EO, Li X, Vgontzas AN, Liao D. Obesity is associated with impaired cardiac autonomic modulation in children. Int J Pediatr Obes. 2011;6:128–34.

    Article  PubMed  Google Scholar 

  42. Poliakova N, Després JP, Bergeron J, Alméras N, Tremblay A, Poirier P. Influence of obesity indices, metabolic parameters and age on cardiac autonomic function in abdominally obese men. Metabolism. 2012;61:1270–9.

    Article  CAS  PubMed  Google Scholar 

  43. Banu I, Nguyen MT, Hamo-Tchatchouang E, Cosson E, Valensi P. Relationship between blood pressure, heart rate and cardiac autonomic dysfunction in non-diabetic obese patients. Ann Cardiol Angeiol (Paris). 2015;64:139–44.

    Article  CAS  Google Scholar 

  44. Emdin M, Gastaldelli A, Muscelli E, Macerata A, Natali A, Camastra S, et al. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss. Circulation. 2001;103:513–9.

    Article  CAS  PubMed  Google Scholar 

  45. Perciaccante A, Fiorentini A, Paris A, Serra P, Tubani L. Circadian rhythm of the autonomic nervous system in insulin resistant subjects with normoglycemia, impaired fasting glycemia, impaired glucose tolerance, type 2 diabetes mellitus. BMC Cardiovasc Disord. 2006;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:665.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ewing DJ, Neilson JM. QT interval length and diabetic autonomic neuropathy. Diabet Med. 1990;7:23–6.

    Article  CAS  PubMed  Google Scholar 

  48. Ewing DJ, Boland O, Neilson JM, Cho CG, Clarke BF. Autonomic neuropathy, QT interval lengthening and unexpected deaths in male diabetic patients. Diabetologia. 1991;34:182–5.

    Article  CAS  PubMed  Google Scholar 

  49. Sivieri R, Veglio M, Chinaglia A, Scaglione P, Cavallo-Perin P. Prevalence of QT prolongation in a type 1 diabetic population and its association with autonomic neuropathy. The Neuropathy Study Group of the Italian Society for the Study of Diabetes. Diabet Med. 1993;10:920–4.

    Article  CAS  PubMed  Google Scholar 

  50. Oka H, Mochio S, Sato K, Isogai Y. Correlation of altered Q-T interval and sympathetic nervous system dysfunction in diabetic autonomic neuropathy. Eur Neurol. 1994;34:23–9.

    Article  CAS  PubMed  Google Scholar 

  51. Imam MH, Karmakar CK, Jelinek HF, Palaniswami M, Khandoker AH. Detecting subclinical diabetic cardiac autonomic neuropathy by analyzing ventricular repolarization dynamics. IEEE J Biomed Health Inform. 2016;20:64–72.

    Article  PubMed  Google Scholar 

  52. Esposito K, Marfella R, Gualdiero P, Carusone C, Pontillo A, Giugliano G, et al. Sympathovagal balance, nighttime blood pressure, and QT intervals in normotensive obese women. Obes Res. 2003;11:653–9.

    Article  PubMed  Google Scholar 

  53. Maule S, Rabbia F, Perni V, Tosello F, Bisbocci D, Mulatero P, et al. Prolonged QT interval and reduced heart rate variability in patients with uncomplicated essential hypertension. Hypertens Res. 2008;31:2003–10.

    Article  PubMed  Google Scholar 

  54. Alsunni A, Majeed F, Yar T, AlRahim A, Ajhawaj AF, Alzaki M. Effects of energy drink consumption on corrected QT interval and heart rate variability in young obese Saudi male university students. Ann Saudi Med. 2015;35:282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation. 1991;83:1888–94.

    Article  CAS  PubMed  Google Scholar 

  56. Abed HS, Wittert GA. Obesity and atrial fibrillation. Obes Rev. 2013;14:929–38.

    Article  CAS  PubMed  Google Scholar 

  57. Nielsen JB, Graff C, Pietersen A, Lind B, Struijk JJ, Olesen MS, et al. J-shaped association between QTc interval duration and the risk of atrial fibrillation: results from the Copenhagen ECG study. J Am Coll Cardiol. 2013;61:2557–64.

    Article  PubMed  Google Scholar 

  58. Lemoine MD, Duverger JE, Naud P, Chartier D, Qi XY, Comtois P, et al. Arrhythmogenic left atrial cellular electrophysiology in a murine genetic long QT syndrome model. Cardiovasc Res. 2011;92:67–74.

    Article  CAS  PubMed  Google Scholar 

  59. Scridon A, Gallet C, Arisha MM, Oréa V, Chapuis B, Li N, et al. Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system. Am J Physiol Heart Circ Physiol. 2012;303:H386–92.

    Article  CAS  PubMed  Google Scholar 

  60. Soltysinska E, Speerschneider T, Winther SV, Thomsen MB. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice. Cardiovasc Diabetol. 2014;13:122.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sánchez G, Araneda F, Peña JP, Finkelstein JP, Riquelme JA, Montecinos L, et al. High-fat-diet-induced obesity produces spontaneous ventricular arrhythmias and increases the activity of ryanodine receptors in mice. Int J Mol Sci. 2018;19:533.

    Article  PubMed Central  CAS  Google Scholar 

  62. Chaves AA, Weinstein DM, Bauer JA. Non-invasive echocardiographic studies in mice: influence of anesthetic regimen. Life Sci. 2001;69:213–22.

    Article  CAS  PubMed  Google Scholar 

  63. Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J Jr. Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol. 2002;282:H2134–40.

    Article  CAS  PubMed  Google Scholar 

  64. Ríha H, Papoušek F, Neckář J, Pirk J, Ošťádal B. Effects of isoflurane concentration on basic echocardiographic parameters of the left ventricle in rats. Physiol Res. 2012;61:419–23.

    Article  PubMed  Google Scholar 

  65. Kato M, Komatsu T, Kimura T, Sugiyama F, Nakashima K, Shimada Y. Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology. 1992;77:669–74.

    Article  CAS  PubMed  Google Scholar 

  66. Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol. 2000;525:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol. 2001;37:926–32.

    Article  CAS  PubMed  Google Scholar 

  68. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol. 2006;148:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to express their gratitude to Prof. A. L’Abbate for his helpful criticism and valuable suggestions, and thank Mrs. Cecilia Ciampi and Mrs. Sara Ciampi for their assistance in animal care and Mrs. Sabrina Marchetti for her assistance in setting up histological samples. This study was supported by the Consiglio Nazionale delle Ricerche, Italy, (Grant GAE P0001865, Principal Investigator: C. Kusmic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Kusmic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’Abbate, S., Di Lascio, N., Nicolini, G. et al. Murine model of left ventricular diastolic dysfunction and electro-mechanical uncoupling following high-fat diet. Int J Obes 44, 1428–1439 (2020). https://doi.org/10.1038/s41366-019-0500-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0500-3

Search

Quick links