Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies

Subjects

Abstract

Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. May ME, Kennedy CH. Health and problem behavior among people with intellectual disabilities. Behav Anal Pr. 2010;3:4–12.

    Google Scholar 

  2. Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). Codas. 2013;25:191–2.

    PubMed  Google Scholar 

  3. Hodges H, Fealko C, Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr. 2020;9:S55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, et al. Emerging role of NIK/IKK2-binding protein (NIBP)/Trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res. 2020;224:55–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marangi G, Leuzzi V, Manti F, Lattante S, Orteschi D, Pecile V, et al. TRAPPC9-related autosomal recessive intellectual disability: report of a new mutation and clinical phenotype. Eur J Hum Genet. 2013;21:229–32.

    Article  CAS  PubMed  Google Scholar 

  6. Chiurazzi P, Kiani AK, Miertus J, Paolacci S, Barati S, Manara E, et al. Genetic analysis of intellectual disability and autism. Acta Biomed. 2020;91:e2020003.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tejada MI, Ibarluzea N. Non-syndromic X linked intellectual disability: current knowledge in light of the recent advances in molecular and functional studies. Clin Genet. 2020;97:677–87.

    Article  CAS  PubMed  Google Scholar 

  9. Ts G, Ka M, MK, GK, Rc J, Bk T. Targeted deep resequencing identifies MID2 mutation for X-linked intellectual disability with varied disease severity in a large kindred from India. Human Mutat. 2014;35. Available from: https://pubmed.ncbi.nlm.nih.gov/24115387/.

  10. Schuler BA, Nelson ET, Koziura M, Cogan JD, Hamid R, Phillips JA. Lessons learned: next-generation sequencing applied to undiagnosed genetic diseases. J Clin Invest. 2022;132. Available from: https://www.jci.org/articles/view/154942.

  11. Sparrow SS, Cicchetti DV. The vineland adaptive behavior scales. In: Major psychological assessment instruments, Vol 2. Needham Heights, MA, US: Allyn & Bacon; 1989. p. 199–231.

  12. Rellini E, Tortolani D, Trillo S, Carbone S, Montecchi F. Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC) correspondence and conflicts with DSM-IV criteria in diagnosis of autism. J Autism Dev Disord. 2004;34:703–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chouchen J, Mahfood M, Alobathani M, Eldin Mohamed WK, Tlili A. Clinical heterogeneity of the SLC26A4 gene in UAE patients with hearing loss and bioinformatics investigation of DFNB4/Pendred syndrome missense mutations. Int J Pediatr Otorhinolaryngol. 2021;140:110467.

    Article  PubMed  Google Scholar 

  14. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.

    Article  CAS  PubMed  Google Scholar 

  15. Hu J, Ng PC. Predicting the effects of frameshifting indels. Genome Biol. 2012;13:R9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee JH, Huang CF, Chuang YJ, Lee CY, Yu WH, Wu CC, et al. Identifying new liver X receptor alpha modulators and distinguishing between agonists and antagonists by crystal ligand pocket screening. Future Med Chem. 2020; Available from: https://www.future-science.com/doi/abs/10.4155/fmc-2020-0069.

  18. Gholkar AA, Senese S, Lo YC, Vides E, Contreras E, Hodara E, et al. The X-linked-intellectual-disability-associated ubiquitin ligase Mid2 interacts with astrin and regulates astrin levels to promote cell division. Cell Rep. 2016;14:180–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Bitner D, Pontes Filho AA, Li F, Liu S, Wang H, et al. Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterol Motil. 2014;26:77–97.

    Article  CAS  PubMed  Google Scholar 

  20. Abbasi AA, Blaesius K, Hu H, Latif Z, Picker-Minh S, Khan MN, et al. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly. Am J Med Genet B Neuropsychiatr Genet. 2017;174:839–45.

    Article  CAS  PubMed  Google Scholar 

  21. Liang ZS, Cimino I, Yalcin B, Raghupathy N, Vancollie VE, Ibarra-Soria X, et al. Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet. 2020;16:e1008916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mir A, Kaufman L, Noor A, Motazacker MM, Jamil T, Azam M, et al. Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Hum Genet. 2009;85:909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mochida GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D, Hill RS, et al. A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet. 2009;85:897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Philippe O, Rio M, Carioux A, Plaza JM, Guigue P, Molinari F, et al. Combination of linkage mapping and microarray-expression analysis identifies NF-kappaB signaling defect as a cause of autosomal-recessive mental retardation. Am J Hum Genet. 2009;85:903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koifman A, Feigenbaum A, Bi W, Shaffer LG, Rosenfeld J, Blaser S, et al. A homozygous deletion of 8q24.3 including the NIBP gene associated with severe developmental delay, dysgenesis of the corpus callosum, and dysmorphic facial features. Am J Med Genet A. 2010;152A:1268–72.

    Article  PubMed  Google Scholar 

  26. Abou Jamra R, Wohlfart S, Zweier M, Uebe S, Priebe L, Ekici A, et al. Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. Eur J Hum Genet. 2011;19:1161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kakar N, Goebel I, Daud S, Nürnberg G, Agha N, Ahmad A, et al. A homozygous splice site mutation in TRAPPC9 causes intellectual disability and microcephaly. Eur J Med Genet. 2012;55:727–31.

    Article  PubMed  Google Scholar 

  28. Giorgio E, Ciolfi A, Biamino E, Caputo V, Di Gregorio E, Belligni EF, et al. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: two proof-of-concept examples. Am J Med Genet A. 2016;170:1772–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mortreux J, Busa T, Germain DP, Nadeau G, Puechberty J, Coubes C, et al. The role of CNVs in the etiology of rare autosomal recessive disorders: the example of TRAPPC9-associated intellectual disability. Eur J Hum Genet. 2018;26:143–8.

    Article  CAS  PubMed  Google Scholar 

  30. Duerinckx S, Meuwissen M, Perazzolo C, Desmyter L, Pirson I, Abramowicz M. Phenotypes in siblings with homozygous mutations of TRAPPC9 and/or MCPH1 support a bifunctional model of MCPH1. Mol Genet Genom Med. 2018;6:660–5.

    Article  CAS  Google Scholar 

  31. Hnoonual A, Graidist P, Kritsaneepaiboon S, Limprasert P. Novel compound heterozygous mutations in the TRAPPC9 gene in two siblings with autism and intellectual disability. Front Genet. 2019;10:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai Z, Kong X. [Diagnosis of a case with mental retardation due to novel compound heterozygous variants of TRAPPC9 gene]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:1115–9.

    PubMed  Google Scholar 

  33. Krämer J, Beer M, Bode H, Winter B. Two novel compound heterozygous mutations in the TRAPPC9 gene reveal a connection of non-syndromic intellectual disability and autism spectrum disorder. Front Genet. 2020;11:972.

    Article  PubMed  Google Scholar 

  34. Wilton KM, Gunderson LB, Hasadsri L, Wood CP, Schimmenti LA. Profound intellectual disability caused by homozygous TRAPPC9 pathogenic variant in a man from Malta. Mol Genet Genom Med. 2020;8:e1211.

    Article  CAS  Google Scholar 

  35. Alvarez-Mora MI, Corominas J, Gilissen C, Sanchez A, Madrigal I, Rodriguez-Revenga L. Novel compound heterozygous mutation in TRAPPC9 gene: the relevance of whole genome sequencing. Genes. 2021;12:557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben Ayed I, Bouchaala W, Bouzid A, Feki W, Souissi A, Ben Nsir S, et al. Further insights into the spectrum phenotype of TRAPPC9 and CDK5RAP2 genes, segregating independently in a large Tunisian family with intellectual disability and microcephaly. Eur J Med Genet. 2021;64:104373.

    Article  PubMed  Google Scholar 

  37. Yousefipour F, Mozhdehipanah H, Mahjoubi F. Identification of two novel homozygous nonsense mutations in TRAPPC9 in two unrelated consanguineous families with intellectual Disability from Iran. Mol Genet Genom Med. 2021;9:e1610.

    Article  CAS  Google Scholar 

  38. Radenkovic S, Martinelli D, Zhang Y, Preston GJ, Maiorana A, Terracciano A, et al. TRAPPC9-CDG: a novel congenital disorder of glycosylation with dysmorphic features and intellectual disability. Genet Med. 2022;24:894–904.

    Article  CAS  PubMed  Google Scholar 

  39. Uctepe E, Yesilyurt A, Esen FN, Tümer S, Mancılar H, Sonmez FM. TRAPPC9-related intellectual disability: report of two new cases and review of the literature. Mol Syndromol. 2023;14:485–92.

    Article  PubMed  Google Scholar 

  40. Amin M, Vignal C, Eltaraifee E, Mohammed IN, Hamed AAA, Elseed MA, et al. A novel homozygous mutation in TRAPPC9 gene causing autosomal recessive non-syndromic intellectual disability. BMC Med Genomics. 2022;15:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bolat H, Ünsel-Bolat G, Derin H, Şen A, Ceylaner S. Distinct autism spectrum disorder phenotype and hand-flapping stereotypes: two siblings with novel homozygous mutation in TRAPPC9 gene and literature review. Mol Syndromol. 2022;13:263–9.

  42. Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, et al. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Sci Adv. 2020;6:eabb7781.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development. 2010;137:2329–39.

    Article  CAS  PubMed  Google Scholar 

  44. Chakkalakal SA, Heilig J, Baumann U, Paulsson M, Zaucke F. Impact of arginine to cysteine mutations in collagen II on protein secretion and cell survival. Int J Mol Sci. 2018 ;19:541.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kabra A, Rumpa E, Li Y. Observation of arginine side-chain motions coupled to the global conformational exchange process in deubiquitinase A. ACS Omega. 2022;7:9936–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baynes BM, Wang DIC, Trout BL. Role of arginine in the stabilization of proteins against aggregation. Biochemistry. 2005;44:4919–25.

    Article  CAS  PubMed  Google Scholar 

  47. Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, et al. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener. 2011;6:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for their cooperation in the present study. They also thank the doctors of the CHU Hedi Chaker of Sfax’s Child Neurology department for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marwa Kharrat or Faiza Fakhfakh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrat, M., Triki, C., ben isaa, A. et al. Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01242-9

Search

Quick links