Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mediation analysis framework based on variance component to remove genetic confounding effect

Abstract

Identification of pleiotropy at the single nucleotide polymorphism (SNP) level provides valuable insights into shared genetic signals among phenotypes. One approach to study these signals is through mediation analysis, which dissects the total effect of a SNP on the outcome into a direct effect and an indirect effect through a mediator. However, estimated effects from mediation analysis can be confounded by the genetic correlation between phenotypes, leading to inaccurate results. To address this confounding effect in the context of genetic mediation analysis, we propose a restricted-maximum-likelihood (REML)-based mediation analysis framework called REML-mediation, which can be applied to either individual-level or summary statistics data. Simulations demonstrated that REML-mediation provides unbiased estimates of the true cross-trait causal effect, assuming certain assumptions, albeit with a slightly inflated standard error compared to traditional linear regression. To validate the effectiveness of REML-mediation, we applied it to UK Biobank data and analyzed several mediator-outcome trait pairs along with their corresponding sets of pleiotropic SNPs. REML-mediation successfully identified and corrected for genetic confounding effects in these trait pairs, with correction magnitudes ranging from 7% to 39%. These findings highlight the presence of genetic confounding effects in cross-trait epidemiological studies and underscore the importance of accounting for them in data analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code availability

“BOLT-REML” software can be found at https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html.REML-mediation code implementation and illustration can be found at https://github.com/dongzhblake/genetic-mediation-analysis/tree/main.

References

  1. Stearns FW. One hundred years of pleiotropy: a retrospective. Genetics. 2010;186:767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gratten J, Visscher PM. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med. 2016;8:1–3.

    Article  Google Scholar 

  3. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27:R195–R208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacKinnon DP, Fairchild AJ, Fritz MS. Mediation analysis. Annu Rev Psychol. 2007;58:593.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeng P, Shao Z, Zhou X. Statistical methods for mediation analysis in the era of high-throughput genomics: current successes and future challenges. Comput Struct Biotechnol J. 2021;19:3209–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang YT, Liang L, Moffatt MF, Cookson WO, Lin X. iGWAS: integrative genome‐wide association studies of genetic and genomic data for disease susceptibility using mediation analysis. Genet Epidemiol. 2015;39:347–56.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yan Q, Forno E, C. Celedón J, Chen W. A region-based method for causal mediation analysis of DNA methylation data. Epigenetics. 2022;17:286–96.

    Article  PubMed  Google Scholar 

  8. Keele GR, et al. Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. PLoS Genet. 2020;16:e1008537.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siedlinski M, et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet. 2013;132:431–41.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salinas YD, Wang Z, DeWan AT. Discovery and mediation analysis of cross-phenotype associations between asthma and body mass index in 12q13. 2. Am J Epidemiol. 2021;190:85–94.

    Article  PubMed  Google Scholar 

  11. Wang N, et al. Innate IL‐23/Type 17 immune responses mediate the effect of the 17q21 locus on childhood asthma. Clin Exp Allergy. 2021;51:892–901.

    Article  CAS  PubMed  Google Scholar 

  12. Lutz SM, Hokanson JE. Mediation analysis in genome-wide association studies: current perspectives. Open Access. Bioinformatics. 2015;7:1–5.

    CAS  Google Scholar 

  13. Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal mediation effects. Stat Sci. 2010;25:51–71.

    Article  Google Scholar 

  14. Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Psychol Methods. 2010;15:309.

    Article  PubMed  Google Scholar 

  15. Lee SL, et al. The association between loneliness and depressive symptoms among adults aged 50 years and older: a 12-year population-based cohort study. Lancet Psychiatry. 2021;8:48–57.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pingault J-B, et al. Genetic sensitivity analysis: adjusting for genetic confounding in epidemiological associations. PLoS Genet. 2021;17:e1009590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019;8:giz082.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:2759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bogdan R, Baranger DA, Agrawal A. Polygenic risk scores in clinical psychology: bridging genomic risk to individual differences. Annu Rev Clin Psychol. 2018;14:119.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao B, Zhu H. On genetic correlation estimation with summary statistics from genome-wide association studies. J Am Stat Assoc. 2022;117:1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Rietveld CA, de Vlaming R, Slob EA. The identification of mediating effects using genome-based restricted maximum likelihood estimation. PLoS Genet. 2023;19:e1010638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang SZ, Lu W, Zong XF, Ruan HY, Liu Y. Obesity and hypertension. Exp Therapeutic Med. 2016;12:2395–9.

    Article  Google Scholar 

  23. Egan K, et al. Longitudinal associations between asthma and general and abdominal weight status among N orwegian adolescents and young adults: the HUNT Study. Pediatr Obes. 2015;10:345–52.

    Article  CAS  PubMed  Google Scholar 

  24. Loh P-R, et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet. 2015;47:1385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matilainen K, Mäntysaari EA, Lidauer MH, Strandén I, Thompson R. Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters. PloS one. 2013;8:e80821.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, et al. Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics. Brief Bioinforma. 2021;22:bbaa442.

    Article  Google Scholar 

  28. MacKinnon DP, Krull JL, Lockwood CM. Equivalence of the mediation, confounding and suppression effect. Prev Sci. 2000;1:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, et al. Sex difference in the association between obesity and asthma in US adults: findings from a national study. Respiratory Med. 2015;109:955–62.

    Article  Google Scholar 

  30. Zhang Z, et al. Interaction of sex, age, body mass index and race on hypertension risk in the American population: a cross-sectional study. Eur J Public Health. 2021;31:1042–7.

    Article  PubMed  Google Scholar 

  31. Ni G, et al. Estimation of genetic correlation via linkage disequilibrium score regression and genomic restricted maximum likelihood. Am J Hum Genet. 2018;102:1185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srivastava AK, Williams SM, Zhang G. Heritability estimation approaches utilizing genome‐wide data. Curr Protoc. 2023;3:e734.

    Article  CAS  PubMed  Google Scholar 

  33. Evans LM, et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat Genet. 2018;50:737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacobsson JA, et al. Detailed analysis of variants in FTO in association with body composition in a cohort of 70-year-olds suggests a weakened effect among elderly. PloS one. 2011;6:e20158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He D, et al. FTO gene variant and risk of hypertension: a meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism. 2014;63:633–9.

    Article  CAS  PubMed  Google Scholar 

  36. Pausova Z, et al. A common variant of the FTO gene is associated with not only increased adiposity but also elevated blood pressure in French Canadians. Circulation: Cardiovascular Genet. 2009;2:260–9.

    CAS  Google Scholar 

  37. Sakaue S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415–24.

    Article  CAS  PubMed  Google Scholar 

  38. Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. 2009.

  39. Jiang J, Jiang W, Paul D, Zhang Y, Zhao, H. High-dimensional asymptotic behavior of inference based on GWAS summary statistics. Statist Sin. 2023;33:1555–76.

  40. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23.

    Article  CAS  PubMed  Google Scholar 

  41. Preacher KJ, Hayes AF. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput. 2004;36:717–31.

    Article  PubMed  Google Scholar 

  42. Egan KB, Ettinger AS, Bracken MB. Childhood body mass index and subsequent physician-diagnosed asthma: a systematic review and meta-analysis of prospective cohort studies. BMC pediatrics. 2013;13:1–13.

    Article  Google Scholar 

  43. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respiratory Crit Care Med. 2007;175:661–6.

    Article  Google Scholar 

  44. Pingault J-B, et al. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19:566–80.

    Article  CAS  PubMed  Google Scholar 

  45. Bond TA, et al. Exploring the role of genetic confounding in the association between maternal and offspring body mass index: evidence from three birth cohorts. Int J Epidemiol. 2020;49:233–43.

    Article  PubMed  Google Scholar 

  46. Barbaro N, Boutwell BB, Barnes J, Shackelford TK. Genetic confounding of the relationship between father absence and age at menarche. Evolut Hum Behav. 2017;38:357–65.

    Article  Google Scholar 

  47. Myers JA, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol. 2011;174:1213–22.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jiang L, et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat Genet. 2019;51:1749–55.

    Article  CAS  PubMed  Google Scholar 

  49. Aroian LA. The probability function of the product of two normally distributed variables. Ann Math Stat 1947;18:265–71.

  50. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Zhao or Andrew T. DeWan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zhao, H. & DeWan, A.T. A mediation analysis framework based on variance component to remove genetic confounding effect. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01232-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01232-x

Search

Quick links