Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A splice acceptor variant in RGS6 associated with intellectual disability, microcephaly, and cataracts disproportionately promotes expression of a subset of RGS6 isoforms

Abstract

Intellectual disability (ID) is associated with an increased risk of developing psychiatric disorders, suggesting a common underlying genetic factor. Importantly, altered signaling and/or expression of regulator of G protein signaling 6 (RGS6) is associated with ID and numerous psychiatric disorders. RGS6 is highly conserved and undergoes complex alternative mRNA splicing producing ~36 protein isoforms with high sequence similarity historically necessitating a global approach in functional studies. However, our recent analysis in mice revealed RGS6 is most highly expressed in CNS with RGS6L(+GGL) isoforms predominating. A previously reported genetic variant in intron 17 of RGS6 (c.1369-1G>C), associated with ID, may provide further clues into RGS6L(+GGL) isoform functional delineation. This variant was predicted to alter a highly conserved canonical 3’ acceptor site creating an alternative branch point within exon 18 (included in a subset of RGS6L(+GGL) transcripts) and a frameshift forming an early stop codon. We previously identified this alternative splice site and demonstrated its use generates RGS6Lζ(+GGL) isoforms. Here, we show that the c.1369-1G>C variant disrupts the canonical, preferred (>90%) intron 17 splice site and leads to the exclusive use of the alternate exon 18 splice site, inducing disproportionate expression of a subset of isoforms, particularly RGS6Lζ(+GGL). Furthermore, RGS6 global knockout mice do not exhibit ID. Thus, ID caused by the c.1369-1G>C variant likely results from altered RGS6 isoform expression, rather than RGS6 isoform loss. In summary, these studies highlight the importance of proper RGS6 splicing and identify a previously unrecognized role of G protein signaling in ID.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Additional data are available from the corresponding author upon request.

References

  1. Kessler RC, Wang PS. The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health. 2008;29:115–29.

    Article  PubMed  Google Scholar 

  2. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–59.

    Article  Google Scholar 

  3. Sheehan R, Hassiotis A, Walters K, Osborn D, Strydom A, Horsfall L. Mental illness, challenging behaviour, and psychotropic drug prescribing in people with intellectual disability: UK population based cohort study. BMJ. 2015;351:h4326.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooper SA, Smiley E, Morrison J, Williamson A, Allan L. Mental ill-health in adults with intellectual disabilities: prevalence and associated factors. Br J psychiatry : J Ment Sci 2007;190:27–35.

    Article  Google Scholar 

  5. Chograni M, Alkuraya FS, Maazoul F, Lariani I, Chaabouni-Bouhamed H. RGS6: a novel gene associated with congenital cataract, mental retardation, and microcephaly in a Tunisian family. Invest Ophthalmol Vis Sci. 2014;56:1261–6.

    Article  PubMed  Google Scholar 

  6. Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet (Lond, Engl). 2013;381:1371–9.

    Article  Google Scholar 

  7. Cross-Disorder Group of the Psychiatric Genomics C. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell. 2019;179:1469–82.e11.

    Article  Google Scholar 

  8. Stewart A, Maity B, Anderegg SP, Allamargot C, Yang J, Fisher RA. Regulator of G protein signaling 6 is a critical mediator of both reward-related behavioral and pathological responses to alcohol. Proc Natl Acad Sci USA. 2015;112:E786–95.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Chen G, Zhang F, Xue W, Wu R, Xu H, Wang K, et al. An association study revealed substantial effects of dominance, epistasis and substance dependence co-morbidity on alcohol dependence symptom count. Addict Biol. 2017;22:1475–85.

    Article  CAS  PubMed  Google Scholar 

  10. Stewart A, Maity B, Wunsch AM, Meng F, Wu Q, Wemmie JA, et al. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT(1A) receptor-adenylyl cyclase axis. FASEB J. 2014;28:1735–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bifsha P, Yang J, Fisher RA, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, et al. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight. 2019;5:e126769.

    Article  PubMed  Google Scholar 

  13. Petyuk VA, Yu L, Olson HM, Yu F, Clair G, Qian WJ, et al. Proteomic Profiling of the Substantia Nigra to Identify Determinants of Lewy Body Pathology and Dopaminergic Neuronal Loss. J Proteome Res. 2021;20:2266–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moon SW, Dinov ID, Kim J, Zamanyan A, Hobel S, Thompson PM, et al. Structural Neuroimaging Genetics Interactions in Alzheimer’s Disease. J Alzheimers Dis. 2015;48:1051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem. 2000;69:795–827.

    Article  CAS  PubMed  Google Scholar 

  16. Hooks SB, Waldo GL, Corbitt J, Bodor ET, Krumins AM, Harden TK. RGS6, RGS7, RGS9, and RGS11 stimulate GTPase activity of Gi family G-proteins with differential selectivity and maximal activity. J Biol Chem. 2003;278:10087–93.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson GR, Posokhova E, Martemyanov KA. The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys. 2009;54:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chatterjee TK, Liu Z, Fisher RA. Human RGS6 gene structure, complex alternative splicing, and role of N terminus and G protein gamma-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. J Biol Chem. 2003;278:30261–71.

    Article  CAS  PubMed  Google Scholar 

  19. Ahlers-Dannen KE, Yang J, Spicer MM, Maity B, Stewart A, Koland JG, et al. Protein Profiling of RGS6, a Pleiotropic Gene Implicated in Numerous Neuropsychiatric Disorders, Reveals Multi-Isoformic Expression and a Novel Brain-Specific Isoform. eNeuro. 2022;9:ENEURO.0379–21.2021.

    Article  PubMed  Google Scholar 

  20. Yang J, Huang J, Maity B, Gao Z, Lorca RA, Gudmundsson H, et al. RGS6, a modulator of parasympathetic activation in heart. Circ Res. 2010;107:1345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crawley JN. Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev. 2004;10:248–58.

    Article  PubMed  Google Scholar 

  22. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3:287–302.

    Article  CAS  PubMed  Google Scholar 

  23. Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 2007;27:6128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spicer MM, Yang J, Fu DA, Devore AN, Lauffer M, Sayar-Atasoy N, et al. RGS6 mediates exercise-induced recovery of hippocampal neurogenesis, learning, and memory in an Alzheimer’s mouse model. 2023; bioRxiv https://doi.org/10.1101/2023.04.17.537272.

  25. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet. 2017;49:1529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Li C, Afridi SK, Zu S, Xu JW, Quanquin N, et al. E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathol Commun. 2018;6:77.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol. 2019;9:180265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Snow BE, Betts L, Mangion J, Sondek J, Siderovski DP. Fidelity of G protein beta-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci USA. 1999;96:6489–94.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton DW, et al. Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci. 2006;47:1274–80.

    Article  PubMed  Google Scholar 

  30. Liu Z, Chatterjee TK, Fisher RA. RGS6 interacts with SCG10 and promotes neuronal differentiation. Role of the G gamma subunit-like (GGL) domain of RGS6. J Biol Chem. 2002;277:37832–9.

    Article  CAS  PubMed  Google Scholar 

  31. Yi J, Yun J, Li ZK, Xu CT, Pan BR. Epidemiology and molecular genetics of congenital cataracts. Int J Ophthalmol. 2011;4:422–32.

    PubMed  PubMed Central  Google Scholar 

  32. Churchill A, Graw J. Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond B Biol Sci. 2011;366:1234–49.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kalantan H. Posterior polar cataract: A review. Saudi J Ophthalmol. 2012;26:41–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work presented in this manuscript was supported by NIH AA025919-03S1 and AA025919-05S1.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K.E.A-D., J.Y., M.M.S., R.F.; Formal Analysis: K.E.A-D., J.Y., M.M.S.; Funding Acquisition: R.F.; Investigation: K.E.A-D., J.Y., M.M.S., D.F., A.D.; Methodology: K.E.A-D., J.Y., M.M.S., A.D., R.F.; Project Administration: K.E.A-D., J.Y., R.F.; Visualization: K.E.A-D., J.Y., M.M.S., A.D.; Writing-original Draft: K.E.A-D., J.Y., M.M.S, D.F., A.D., R.F.; Writing-review & Editing: K.E.A-D., J.Y., M.M.S, D.F., A.D., R.F.

Corresponding author

Correspondence to R. A. Fisher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal procedures described here were approved by the University of Iowa Institute for Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlers-Dannen, K.E., Yang, J., Spicer, M.M. et al. A splice acceptor variant in RGS6 associated with intellectual disability, microcephaly, and cataracts disproportionately promotes expression of a subset of RGS6 isoforms. J Hum Genet 69, 145–152 (2024). https://doi.org/10.1038/s10038-024-01220-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-024-01220-1

Search

Quick links