Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compound heterozygous variants of THG1L result in autosomal recessive cerebellar ataxia

Abstract

tRNA-histidine guanyltransferase 1-like protein (THG1L), located in the mitochondria, plays a crucial role in the tRNA maturation process. Dysfunction of THG1L results in abnormal mitochondrial tRNA modification and neurodevelopmental disorders. To date, few studies have focused on THG1L-related cerebellar ataxia. Whole-exome sequencing revealed compound heterozygous variants NM_017872.5: [c.224A > G]; [c.369-8T > G] in THG1L in a 6-year-old boy with moderate cerebellar ataxia. The variant c.224A > G was demonstrated to downregulate its RNA and protein expression, and c.369-8 T > G resulted in a 7 bp insertion before exon 3. Our case expanded the gene variation and clinical spectrum of THG1L-related cerebellar ataxia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM. tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5’ end of tRNAHis. Genes Dev. 2003;17:2889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, et al. tRNA(His) guanylyltransferase (THG1), a unique 3’-5’ nucleotidyl transferase, shares unexpected structural homology with canonical 5’-3’ DNA polymerases. Proc Natl Acad Sci USA. 2010;107:20305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Edvardson S, Elbaz-Alon Y, Jalas C, Matlock A, Patel K, Labbe K, et al. A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay. Neurogenetics. 2016;17:219–25.

    Article  CAS  PubMed  Google Scholar 

  4. Shaheen R, Maddirevula S, Ewida N, Alsahli S, Abdel-Salam GMH, Zaki MS, et al. Genomic and phenotypic delineation of congenital microcephaly. Genet Med. 2019;21:545–52.

    Article  PubMed  Google Scholar 

  5. Walker MA, Lerman-Sagie T, Swoboda K, Lev D, Blumkin L. Refining the phenotype of the THG1L (p.Val55Ala mutation)-related mitochondrial autosomal recessive congenital cerebellar ataxia. Am J Med Genet A. 2019;179:1575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rabin R, Hirsch Y, Johansson MM, Ekstein J, Ekstein A, Pappas J. Severe epileptic encephalopathy associated with compound heterozygosity of THG1L variants in the Ashkenazi Jewish population. Am J Med Genet A. 2021;185:1589–97.

    Article  CAS  PubMed  Google Scholar 

  7. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc. 2015;10:1556–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bertini E, Zanni G, Boltshauser E. Nonprogressive congenital ataxias. Handb Clin Neurol. 2018;155:91–103.

    Article  PubMed  Google Scholar 

  10. Hickey FB, Corcoran JB, Docherty NG, Griffin B, Bhreathnach U, Furlong F, et al. IHG-1 promotes mitochondrial biogenesis by stabilizing PGC-1alpha. J Am Soc Nephrol. 2011;22:1475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fritz S, Rapaport D, Klanner E, Neupert W, Westermann B. Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J Cell Biol. 2001;152:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eura Y, Ishihara N, Yokota S, Mihara K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem. 2003;134:333–44.

    Article  CAS  PubMed  Google Scholar 

  13. Hickey FB, Corcoran JB, Griffin B, Bhreathnach U, Mortiboys H, Reid HM, et al. IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes. 2014;63:4314–25.

    Article  CAS  PubMed  Google Scholar 

  14. Rasheed A, Gumus E, Zaki M, Johnson K, Manzoor H, LaForce G, et al. Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. J Med Genet. 2021;58:237–46.

    Article  CAS  PubMed  Google Scholar 

  15. Han L, Chen M, Wang Y, Wu H, Quan Y, Bai T, et al. Pathogenic missense mutation pattern of forkhead box genes in neurodevelopmental disorders. Mol Genet Genom Med. 2019;7:e00789.

    Article  Google Scholar 

  16. Jespersgaard C, Hey AB, Ilginis T, Hjortshoj TD, Fang M, Bertelsen M, et al. A missense mutation in RAB28 in a family with cone-rod dystrophy and postaxial polydactyly prevents localization of RAB28 to the primary cilium. Invest Ophthalmol Vis Sci. 2020;61:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hua J, Wan YY. Whole-exome sequencing identified a novel mutation of AURKC in a Chinese family with macrozoospermia. J Assist Reprod Genet. 2019;36:529–34.

    Article  PubMed  Google Scholar 

  18. Castaman G, Giacomelli SH, Mancuso ME, D’Andrea G, Santacroce R, Sanna S, et al. Deep intronic variations may cause mild hemophilia A. J Thromb Haemost. 2011;9:1541–8.

    Article  CAS  PubMed  Google Scholar 

  19. Schulz HL, Grassmann F, Kellner U, Spital G, Ruther K, Jagle H, et al. Mutation spectrum of the ABCA4 gene in 335 Stargardt disease patients from a multicenter german cohort-impact of selected deep intronic variants and common SNPs. Invest Ophthalmol Vis Sci. 2017;58:394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez-Pizarro A, Dembic M, Perez B, Andresen BS, Desviat LR. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site. PLoS Genet. 2018;14:e1007360.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paleologou E, Ismayilova N, Kinali M. Use of the ketogenic diet to treat intractable epilepsy in mitochondrial disorders. J Clin Med. 2017;6:56.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dabke P, Brogden G, Naim HY, Das AM. Ketogenic diet: impact on cellular lipids in hippocampal murine neurons. Nutrients. 2020;12:3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Zuozhen Yang from CipherGene LLC for his support in manuscript review and editing. This work was supported by the Joint Construction Project of Medical Science and Technology in Henan Province (LHGJ20200452).

Author information

Authors and Affiliations

Authors

Contributions

RH, MC: conceptualization, methodology, experiments, paper writing; JG, JW: data analysis, variant interpretation; MW, YM: sample collection, phenotypic description, patient follow-up; TJ, XZ: funding, supervision, manuscript reviewing, and editing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xiaoli Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Chu, M., Gao, J. et al. Compound heterozygous variants of THG1L result in autosomal recessive cerebellar ataxia. J Hum Genet 68, 843–848 (2023). https://doi.org/10.1038/s10038-023-01192-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01192-8

Search

Quick links