Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of small-sized intrachromosomal segments at the ends of INV–DUP–DEL patterns

Abstract

The mechanism of chromosomal rearrangement associated with inverted–duplication–deletion (INV–DUP–DEL) pattern formation has been investigated by many researchers, and several possible mechanisms have been proposed. Currently, fold-back and subsequent dicentric chromosome formation has been established as non-recurrent INV–DUP–DEL pattern formation mechanisms. In the present study, we analyzed the breakpoint junctions of INV–DUP–DEL patterns in five patients using long-read whole-genome sequencing and detected 2.2–6.1 kb copy-neutral regions in all five patients. At the end of the INV–DUP–DEL, two patients exhibited chromosomal translocations, which are recognized as telomere capture, and one patient showed direct telomere healing. The remaining two patients had additional small-sized intrachromosomal segments at the end of the derivative chromosomes. These findings have not been previously reported but they may only be explained by the presence of telomere capture breakage. Further investigations are required to better understand the mechanisms underlying this finding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shimada S, Shimojima K, Okamoto N, Sangu N, Hirasawa K, Matsuo M, et al. Microarray analysis of 50 patients reveals the critical chromosomal regions responsible for 1p36 deletion syndrome-related complications. Brain Dev. 2015;37:515–26.

    Article  PubMed  Google Scholar 

  2. Yamamoto-Shimojima K, Kouwaki M, Kawashima Y, Itomi K, Momosaki K, Ozasa S, et al. Natural histories of patients with Wolf-Hirschhorn syndrome derived from variable chromosomal abnormalities. Congenit Anom (Kyoto). 2019;59:169–73.

    Article  PubMed  CAS  Google Scholar 

  3. Ballif BC, Wakui K, Gajecka M, Shaffer LG. Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements. Hum Genet 2004;114:198–206.

    Article  PubMed  CAS  Google Scholar 

  4. Zuffardi O, Bonaglia M, Ciccone R, Giorda R. Inverted duplications deletions: underdiagnosed rearrangements?? Clin Genet. 2009;75:505–13.

    Article  PubMed  CAS  Google Scholar 

  5. Shimokawa O, Kurosawa K, Ida T, Harada N, Kondoh T, Miyake N, et al. Molecular characterization of inv dup del(8p): analysis of five cases. Am J Med Genet A 2004;128a:133–7.

    Article  PubMed  Google Scholar 

  6. Vibert R, Mignot C, Keren B, Chantot-Bastaraud S, Portnoï MF, Nouguès MC, et al. Neurodevelopmental phenotype in 36 new patients with 8p inverted duplication-deletion: genotype-phenotype correlation for anomalies of the corpus callosum. Clin Genet. 2022;101:307–16.

    Article  PubMed  CAS  Google Scholar 

  7. Yurchenko DA, Minzhenkova ME, Dadali EL, Markova ZG, Rudenskaya GE, Matyushchenko GN, et al. Clinical manifestations of various molecular cytogenetic variants of eight cases of "8p inverted duplication/deletion syndrome". Biomedicines .2022;10:567.

    Article  PubMed  PubMed Central  Google Scholar 

  8. García-Santiago FA, Martínez-Glez V, Santos F, García-Miñaur S, Mansilla E, Meneses AG, et al. Analysis of invdupdel(8p) rearrangement: Clinical, cytogenetic and molecular characterization. Am J Med Genet A. 2015;167a:1018–25.

    Article  PubMed  Google Scholar 

  9. Kato T, Inagaki H, Miyai S, Suzuki F, Naru Y, Shinkai Y, et al. The involvement of U-type dicentric chromosomes in the formation of terminal deletions with or without adjacent inverted duplications. Hum Genet. 2020;139:1417–27.

    Article  PubMed  CAS  Google Scholar 

  10. Rowe LR, Lee JY, Rector L, Kaminsky EB, Brothman AR, Martin CL, et al. U-type exchange is the most frequent mechanism for inverted duplication with terminal deletion rearrangements. J Med Genet. 2009;46:694–702.

    Article  PubMed  CAS  Google Scholar 

  11. Yu S, Graf WD. Telomere capture as a frequent mechanism for stabilization of the terminal chromosomal deletion associated with inverted duplication. Cytogenet Genome Res. 2010;129:265–74.

    Article  PubMed  CAS  Google Scholar 

  12. Kibe T, Mori Y, Okanishi T, Shimojima K, Yokochi K, Yamamoto T. Two concurrent chromosomal aberrations involving interstitial deletion in 1q24.2q25.2 and inverted duplication and deletion in 10q26 in a patient with stroke associated with antithrombin deficiency and a patent foramen ovale. Am J Med Genet A. 2011;155a:215–20.

    Article  PubMed  Google Scholar 

  13. Kaneko S, Shimbo A, Irabu H, Yamamoto T, Shimizu M. Inverted-duplication-deletion of chromosome 10q identified in a patient with systemic lupus erythematosus. Pediatr Int. 2022;65:e15396.

    Article  Google Scholar 

  14. Tamura T, Yamamoto Shimojima K, Okamoto N, Yagasaki H, Morioka I, Kanno H, et al. Long-read sequence analysis for clustered genomic copy number aberrations revealed architectures of intricately intertwined rearrangements. Am J Med Genet A. 2022;191a:112–9.

  15. Yanagishita T, Imaizumi T, Yamamoto-Shimojima K, Yano T, Okamoto N, Nagata S, et al. Breakpoint junction analysis for complex genomic rearrangements with the caldera volcano-like pattern. Hum Mutat. 2020;41:2119–27.

    Article  PubMed  CAS  Google Scholar 

  16. Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Nishi E, Okamoto N, et al. Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Hum Genet. 2020;139:1555–63.

    Article  PubMed  CAS  Google Scholar 

  17. Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Yamamoto T. Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing. J Hum Genet. 2020;65:735–41.

    Article  PubMed  CAS  Google Scholar 

  18. Clark BE, Shooter C, Smith F, Brawand D, Thein SL. Next-generation sequencing as a tool for breakpoint analysis in rearrangements of the globin gene clusters. Int J Lab Hematol. 2017;39:111–20.

    Article  PubMed  Google Scholar 

  19. Cer RZ, Donohue DE, Mudunuri US, Temiz NA, Loss MA, Starner NJ, et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 2013;41:D94–d100.

    Article  PubMed  CAS  Google Scholar 

  20. Voet T, Vanneste E, Van der Aa N, Melotte C, Jackmaert S, Vandendael T, et al. Breakage-fusion-bridge cycles leading to inv dup del occur in human cleavage stage embryos. Hum Mutat. 2011;32:783–93.

    Article  PubMed  CAS  Google Scholar 

  21. Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC, Shaffer LG, et al. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet. 2014;10:e1004139.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bonaglia MC, Giorda R, Massagli A, Galluzzi R, Ciccone R, Zuffardi O. A familial inverted duplication/deletion of 2p25.1-25.3 provides new clues on the genesis of inverted duplications. Eur J Hum Genet. 2009;17:179–86.

    Article  PubMed  CAS  Google Scholar 

  23. Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 2015;31:587–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell. 2006;21:15–27.

    Article  PubMed  CAS  Google Scholar 

  25. Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet. 2022;15:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Burssed B, Zamariolli M, Favilla BP, Meloni VA, Goloni-Bertollo EM, Bellucco FT, et al. Fold-back mechanism originating inv-dup-del rearrangements in chromosomes 13 and 15. Chromosome Res. 2023;31:10.

    Article  PubMed  CAS  Google Scholar 

  27. Schlade-Bartusiak K, Tucker T, Safavi H, Livingston J, van Allen MI, Eydoux P, et al. Independent post-zygotic breaks of a dicentric chromosome result in mosaicism for an inverted duplication deletion 9p and terminal deletion 9p. Eur J Med Genet. 2013;56:229–35.

    Article  PubMed  Google Scholar 

  28. Pedurupillay CR, Misceo D, Gamage TH, Dissanayake VH, Frengen E. Post-zygotic breakage of a dicentric chromosome results in mosaicism for a telocentric 9p marker chromosome in a boy with developmental delay. Gene 2014;533:403–10.

    Article  PubMed  CAS  Google Scholar 

  29. Kostiner DR, Nguyen H, Cox VA, Cotter PD. Stabilization of a terminal inversion duplication of 8p by telomere capture from 18q. Cytogenet Genome Res. 2002;98:9–12.

    Article  PubMed  CAS  Google Scholar 

  30. Al-Zain A, Nester MR, and Symington LS Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ and Rad51-dependent mechanism. bioRxiv. 2023.

  31. Li BZ, Putnam CD, Kolodner RD. Mechanisms underlying genome instability mediated by formation of foldback inversions in Saccharomyces cerevisiae. Elife .2020;9:e58223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Buysse K, Antonacci F, Callewaert B, Loeys B, Fränkel U, Siu V, et al. Unusual 8p inverted duplication deletion with telomere capture from 8q. Eur J Med Genet. 2009;52:31–6.

    Article  PubMed  Google Scholar 

  33. Knijnenburg J, Uytdewilligen MEW, van Hassel D, Oostenbrink R, Eussen BHJ, de Klein A, et al. Postzygotic telomere capture causes segmental UPD, duplication and deletion of chromosome 8p in a patient with intellectual disability and obesity. Eur J Med Genet. 2017;60:445–50.

    Article  PubMed  Google Scholar 

  34. Milosevic J, El Khattabi L, Roubergue A, Coussement A, Doummar D, Cuisset L, et al. Inverted duplication with deletion: first interstitial case suggesting a novel undescribed mechanism of formation. Am J Med Genet A. 2014;164a:3180–6.

    Article  PubMed  CAS  Google Scholar 

  35. Chabchoub E, Rodríguez L, Galán E, Mansilla E, Martínez-Fernandez ML, Martínez-Frías ML, et al. Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo-telomere formation. J Med Genet. 2007;44:250–6.

    Article  PubMed  CAS  Google Scholar 

  36. Hannes F, Van Houdt J, Quarrell OW, Poot M, Hochstenbach R, Fryns JP, et al. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions. Hum Mutat. 2010;31:1343–51.

    Article  PubMed  Google Scholar 

  37. Yatsenko SA, Brundage EK, Roney EK, Cheung SW, Chinault AC, Lupski JR. Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome. Hum Mol Genet. 2009;18:1924–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. Repair of DNA breaks by break-induced replication. Annu Rev Biochem. 2021;90:165–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rossi E, Riegel M, Messa J, Gimelli S, Maraschio P, Ciccone R, et al. Duplications in addition to terminal deletions are present in a proportion of ring chromosomes: clues to the mechanisms of formation. J Med Genet. 2008;45:147–54.

    Article  PubMed  CAS  Google Scholar 

  40. Murmann AE, Conrad DF, Mashek H, Curtis CA, Nicolae RI, Ober C, et al. Inverted duplications on acentric markers: mechanism of formation. Hum Mol Genet. 2009;18:2241–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guilherme RS, Meloni VF, Kim CA, Pellegrino R, Takeno SS, Spinner NB, et al. Mechanisms of ring chromosome formation, ring instability and clinical consequences. BMC Med Genet. 2011;12:171.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the patients and their families for their cooperation. We also thank M. Kiyooka and W. Chen for the PacBio sequencing and GeneBay, Inc. for the Nanopore PromethION sequencing.

Funding

This study was supported by JSPS KAKENHI, Grant Numbers 21K07873 (JSPS) and 16H06279 (PAGS).

Author information

Authors and Affiliations

Authors

Contributions

TY designed the study. KSY organized the study and drafted the manuscript. TT, NO, EN, AN, IT, YS, and MS contributed to acquisition of data. YM and AT analyzed the data. HK reviewed the manuscript critically. All authors contributed to the data interpretation. All authors agree to be accountable for all aspects of the work and ensure that questions related to the accuracy or integrity of any part of the study are appropriately investigated and resolved.

Corresponding author

Correspondence to Toshiyuki Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimojima Yamamoto, K., Tamura, T., Okamoto, N. et al. Identification of small-sized intrachromosomal segments at the ends of INV–DUP–DEL patterns. J Hum Genet 68, 751–757 (2023). https://doi.org/10.1038/s10038-023-01181-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01181-x

Search

Quick links