Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias

Abstract

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness in the lower extremities. To date, a total of 88 types of SPG are known. To diagnose HSP, multiple technologies, including microarray, direct sequencing, multiplex ligation-dependent probe amplification, and short-read next-generation sequencing, are often chosen based on the frequency of HSP subtypes. Exome sequencing (ES) is commonly used. We used ES to analyze ten cases of HSP from eight families. We identified pathogenic variants in three cases (from three different families); however, we were unable to determine the cause of the other seven cases using ES. We therefore applied long-read sequencing to the seven undetermined HSP cases (from five families). We detected intragenic deletions within the SPAST gene in four families, and a deletion within PSEN1 in the remaining family. The size of the deletion ranged from 4.7 to 12.5 kb and involved 1–7 exons. All deletions were entirely included in one long read. We retrospectively performed an ES-based copy number variation analysis focusing on pathogenic deletions, but were not able to accurately detect these deletions. This study demonstrated the efficiency of long-read sequencing in detecting intragenic pathogenic deletions in ES-negative HSP patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saputra L, Kumar KR. Challenges and controversies in the genetic diagnosis of hereditary spastic paraplegia. Curr Neurol Neurosci Rep. 2021;21:15.

    PubMed  PubMed Central  Google Scholar 

  2. Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: an update. Int J Mol Sci. 2022;23:1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schob C, Hempel M, Safka Brozkova D, Jiang H, Kim SY, Batzir NA, et al. Dominant KPNA3 mutations cause infantile-onset hereditary spastic paraplegia. Ann Neurol. 2021;90:738–50.

    CAS  PubMed  Google Scholar 

  4. Koh K, Ishiura H, Tsuji S, Takiyama Y. JASPAC: Japan Spastic Paraplegia Research Consortium. Brain Sci. 2018;8:153.

    PubMed  PubMed Central  Google Scholar 

  5. Shribman S, Reid E, Crosby AH, Houlden H, Warner TT. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18:1136–46.

    CAS  PubMed  Google Scholar 

  6. Hensiek A, Kirker S, Reid E. Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing. J Neurol. 2015;262:1601–12.

    CAS  PubMed  Google Scholar 

  7. Gilissen C, Hoischen A, Brunner HG, Veltman JA. Unlocking Mendelian disease using exome sequencing. Genome Biol. 2011;12:228.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.

    CAS  PubMed  Google Scholar 

  9. Fromer M, Purcell SM. Using XHMM software to detect copy number variation in whole-exome sequencing data. Curr Protoc Hum Genet. 2014;81:7.23.1–21.

  10. Nord AS, Lee M, King MC, Walsh T. Accurate and exact CNV identification from targeted high-throughput sequence data. BMC Genomics. 2011;12:184.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, et al. Efficient detection of copy-number variations using exome data: batch- and sex-based analyses. Hum Mutat. 2021;42:50–65.

    CAS  PubMed  Google Scholar 

  12. Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13:36–46.

    PubMed  PubMed Central  Google Scholar 

  14. Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 2017;27:677–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34:666–81.

    PubMed  Google Scholar 

  17. Mizuguchi T, Suzuki T, Abe C, Umemura A, Tokunaga K, Kawai Y, et al. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing. J Hum Genet. 2019;64:359–68.

    CAS  PubMed  Google Scholar 

  18. Seyama R, Tsuchida N, Okada Y, Sakata S, Hamada K, Azuma Y, et al. Two families with TET3-related disorder showing neurodevelopmental delay with craniofacial dysmorphisms. J Hum Genet. 2022;67:157–64.

    CAS  PubMed  Google Scholar 

  19. Danis D, Jacobsen JOB, Balachandran P, Zhu Q, Yilmaz F, Reese J, et al. SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing. Genome Med. 2022;14:44.

    PubMed  PubMed Central  Google Scholar 

  20. Mitsuhashi S, Ohori S, Katoh K, Frith MC, Matsumoto N. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med. 2020;12:67.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42:D986–92.

    CAS  PubMed  Google Scholar 

  22. Ishiura H, Takahashi Y, Hayashi T, Saito K, Furuya H, Watanabe M, et al. Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet. 2014;59:163–72.

    PubMed  Google Scholar 

  23. Schüle R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S, et al. Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients. Ann Neurol. 2016;79:646–58.

    PubMed  Google Scholar 

  24. Solowska JM, Baas PW. Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain 2015;138:2471–84.

    PubMed  PubMed Central  Google Scholar 

  25. Chelban V, Breza M, Szaruga M, Vandrovcova J, Murphy D, Lee CJ, et al. Spastic paraplegia preceding PSEN1-related familial Alzheimer’s disease. Alzheimers Dement. 2021;13:e12186.

    Google Scholar 

  26. Boone PM, Yuan B, Campbell IM, Scull JC, Withers MA, Baggett BC, et al. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated CNV alleles. Am J Hum Genet. 2014;95:143–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Solowska JM, D’Rozario M, Jean DC, Davidson MW, Marenda DR, Baas PW. Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics. J Neurosci. 2014;34:1856–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Solowska JM, Rao AN, Baas PW. Truncating mutations of SPAST associated with hereditary spastic paraplegia indicate greater accumulation and toxicity of the M1 isoform of spastin. Mol Biol Cell. 2017;28:1728–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiang L, Piermarini E, Baas PW. New hypothesis for the etiology of SPAST-based hereditary spastic paraplegia. Cytoskeleton. 2019;76:289–97.

    PubMed  Google Scholar 

  30. Chen R, Du S, Yao Y, Zhang L, Luo J, Shen Y, et al. A novel SPAST mutation results in spastin accumulation and defects in microtubule dynamics. Mov Disord. 2022;37:598–607.

    CAS  PubMed  Google Scholar 

  31. Solowska JM, Morfini G, Falnikar A, Himes BT, Brady ST, Huang D, et al. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci. 2008;28:2147–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bagaria J, Bagyinszky E, An SSA. Genetics, functions, and clinical impact of presenilin-1 (PSEN1) gene. Int J Mol Sci. 2022;23:10970.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, et al. Presenilin mutations and their impact on neuronal differentiation in Alzheimer’s disease. Neural Regen Res. 2022;17:31–7.

    CAS  PubMed  Google Scholar 

  34. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    CAS  PubMed  Google Scholar 

  35. De Strooper B. Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 2007;8:141–6.

    PubMed  PubMed Central  Google Scholar 

  36. Watanabe H, Shen J. Dominant negative mechanism of Presenilin-1 mutations in FAD. Proc Natl Acad Sci USA. 2017;114:12635–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelleher RJ 3rd, Shen J. Presenilin-1 mutations and Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114:629–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem. 2009;110:1129–34.

    CAS  PubMed  Google Scholar 

  39. Shen J, Kelleher RJ 3rd. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci USA. 2007;104:403–9.

    CAS  PubMed  Google Scholar 

  40. Heilig EA, Gutti U, Tai T, Shen J, Kelleher RJ 3rd. Trans-dominant negative effects of pathogenic PSEN1 mutations on γ-secretase activity and Aβ production. J Neurosci. 2013;33:11606–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Crook R, Verkkoniemi A, Perez-Tur J, Mehta N, Baker M, Houlden H, et al. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med. 1998;4:452–5.

    CAS  PubMed  Google Scholar 

  42. Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013;5:974–85.

    CAS  PubMed  Google Scholar 

  43. Tsuchida N, Nakashima M, Kato M, Heyman E, Inui T, Haginoya K, et al. Detection of copy number variations in epilepsy using exome data. Clin Genet. 2018;93:577–87.

    CAS  PubMed  Google Scholar 

  44. Miyatake S, Koshimizu E, Fujita A, Fukai R, Imagawa E, Ohba C, et al. Detecting copy-number variations in whole-exome sequencing data using the eXome Hidden Markov Model: an ‘exome-first’ approach. J Hum Genet. 2015;60:175–82.

    CAS  PubMed  Google Scholar 

  45. Yao R, Zhang C, Yu T, Li N, Hu X, Wang X, et al. Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data. Mol Cytogenet. 2017;10:30.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the subjects for participating in this study. We also thank N. Watanabe, T. Miyama, M. Sato, S. Sugimoto, and K. Takabe for technical assistance. We are grateful to Anahid Pinchis and Alison Inglis, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript. This work was supported by the Japan Agency for Medical Research and Development (AMED) under grant numbers JP22ek0109595h0001 (HD) and JP22ek0109486, JP22ek0109549, and JP22ek0109493 (NM); JSPS KAKENHI under grant numbers JP23H02829 (SM), JP21K15907 (YU), JP22K15646 (KH), JP21K07869 (EK), JP22K15901 (AF), JP21K07298 (HD), JP21K07440 (FT) and JP23H02877 (TM); the Takeda Science Foundation (HD, NM, and TM); Health Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare (202011073A, 202011029A; FT) and a grant for Strategic Research Promotion from Yokohama City University (SK2804; FT).

Author information

Authors and Affiliations

Authors

Contributions

HF and NM contributed to the study design. HF, HD, SK, SO, EK, YU, NT, AF, KH, KM, SM, TM and NM performed the data analysis. HD, MK, HJ, TT, HK, MS, YM and FT evaluated clinical information of patients. HF, TM and NM prepared the manuscript. NM finalized the manuscript. All authors critically reviewed and revised the manuscript and approved the final version for submission.

Corresponding authors

Correspondence to Takeshi Mizuguchi or Naomichi Matsumoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, H., Mizuguchi, T., Doi, H. et al. Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias. J Hum Genet 68, 689–697 (2023). https://doi.org/10.1038/s10038-023-01170-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01170-0

Search

Quick links