Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Application of genome editing technologies in rats for human disease models

Abstract

Laboratory rats and mice are representative experimental animals for models of human disease. The emergence of genome editing technologies has enabled us to produce a variety of genetically modified animals, including rats, as a means of elucidating the in vivo functions of the gene of interest and characterizing the molecular mechanisms of human disease. Several advanced techniques for knock-in methodologies in rats are currently in development, which permit researchers to introduce precise nucleotide modifications at target sites in the rat’s genome. Furthermore, recent studies with knock-out rats have revealed that observed disease phenotypes are often more similar than mouse models to those of humans. In this article, we introduce the methodologies for efficient gene manipulation in rats using genome editing technologies, and describe the advances made using rats for human disease models. We also discuss the importance of gene manipulation in animal models for the better understanding of fundamental processes among different species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Yamori Y. Overview: studies on spontaneous hypertension-development from animal models toward man. Clin Exp Hypertens A. 1991;13:631–44.

    CAS  PubMed  Google Scholar 

  2. 2.

    Chappel CI, Chappel WR. The discovery and development of the BB rat colony: an animal model of spontaneous diabetes mellitus. Metabolism. 1983;32:8–10.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kawano K, Hirashima T, Mori S, Natori T. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diab Res Clin Pract. 1994;24:S317–320.

    Article  Google Scholar 

  4. 4.

    Mashimo T, Ohmori I, Ouchida M, Ohno Y, Tsurumi T, Miki T, et al. A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in rats. J Neurosci. 2010;30:5744–53.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Serikawa T, Yamada J. Epileptic seizures in rats homozygous for two mutations, zitter and tremor. J Hered. 1986;77:441–4.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kleinau S, Erlandsson H, Klareskog L. Percutaneous exposure of adjuvant oil causes arthritis in DA rats. Clin Exp Immunol. 1994;96:281–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, et al. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech. 2014;7:1215–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mori M, Hattori A, Sawaki M, Tsuzuki N, Sawada N, Oyamada M, et al. The LEC rat: a model for human hepatitis, liver cancer, and much more. Am J Pathol. 1994;144:200–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, et al. An optogenetic toolbox designed for primates. Nat Neurosci. 2011;14:387–97.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Serikawa T, Mashimo T, Takizawa A, Okajima R, Maedomari N, Kumafuji K, et al. National BioResource project-rat and related activities. Exp Anim. 2009;58:333–41.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shimoyama M, De Pons J, Hayman GT, Laulederkind SJ, Liu W, Nigam R, et al. The Rat genome database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 2015;43:D743–750.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, et al. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA. 1989;86:8927–31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988;336:348–52.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 1989;56:313–21.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Gene Dev. 2001;15:3243–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2001;2:743–55.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990;63:1099–112.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, et al. Transgenic rat model of Huntington’s disease. Hum Mol Genet. 2003;12:617–24.

    Article  Google Scholar 

  19. 19.

    Ota T, Asamoto M, Toriyama-Baba H, Yamamoto F, Matsuoka Y, Ochiya T, et al. Transgenic rats carrying copies of the human c-Ha-ras proto-oncogene exhibit enhanced susceptibility to N-butyl-N-(4-hydroxybutyl)nitrosamine bladder carcinogenesis. Carcinogenesis. 2000;21:1391–6.

    CAS  PubMed  Google Scholar 

  20. 20.

    Izsvak Z, Frohlich J, Grabundzija I, Shirley JR, Powell HM, Chapman KM, et al. Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods. 2010;7:443–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR, et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol. 2003;21:645–51.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Smits BM, Mudde J, Plasterk RH, Cuppen E. Target-selected mutagenesis of the rat. Genomics. 2004;83:332–4.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Smits BM, Mudde JB, van de Belt J, Verheul M, Olivier J, Homberg J, et al. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis. Pharmacogenet Genomics. 2006;16:159–69.

    CAS  PubMed  Google Scholar 

  24. 24.

    Mashimo T, Yanagihara K, Tokuda S, Voigt B, Takizawa A, Nakajima R, et al. An ENU-induced mutant archive for gene targeting in rats. Nat Genet. 2008;40:514–5.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519–23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Tong C, Li P, Wu NL, Yan Y, Ying QL. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature. 2010;467:211–3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ. 2014;56:46–52.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300:764.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005;23:967–73.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325:433.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. 2011;29:64–7.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I. Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 2010;19:363–71.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS ONE. 2010;5:e8870.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Jacob HJ, Lazar J, Dwinell MR, Moreno C, Geurts AM. Gene targeting in the rat: advances and opportunities. Trends Genet. 2010;26:510–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. 2012;23:644–50.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14:49–55.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol. 2013;31:23–4.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29:731–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39:6315–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, et al. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep. 2013;3:3379.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333:307.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29:149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol. 2013;31:76–81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol. 2013;31:681–3.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol. 2013;31:684–6.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Ma Y, Ma J, Zhang X, Chen W, Yu L, Lu Y, et al. Generation of eGFP and Cre knockin rats by CRISPR/Cas9. FEBS J. 2014;281:3779–90.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res. 2014;24:122–5.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Yoshimi K, Kaneko T, Voigt B, Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun. 2014;5:4240.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Courtney DG, Moore JE, Atkinson SD, Maurizi E, Allen EH, Pedrioli DM, et al. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther. 2016;23:108–12.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep. 2013;3:3355.

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mizuno S, Dinh TT, Kato K, Mizuno-Iijima S, Tanimoto Y, Daitoku Y, et al. Simple generation of albino C57BL/6 J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm Genome. 2014;25:327–34.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18:92.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Hashimoto M, Yamashita Y, Takemoto T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev Biol. 2016;418:1–9.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Aida T, Chiyo K, Usami T, Ishikubo H, Imahashi R, Wada Y, et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol. 2015;16:87.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Kaneko T, Sakuma T, Yamamoto T, Mashimo T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep. 2014;4:6382.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Kaneko T, Mashimo T. Simple genome editing of rodent intact embryos by electroporation. PLoS ONE. 2015;10:e0142755.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, et al. Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease. Genetics. 2015;200:423–30.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep. 2015;5:11315.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Chen S, Lee B, Lee AY, Modzelewski AJ, He L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem. 2016;291:14457–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc. 2014;9:2493–512.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Remy S, Tesson L, Menoret S, Usal C, De Cian A, Thepenier V, et al. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Res. 2014;24:1371–83.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 2016;7:10548.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Vartak SV, Raghavan SC. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS J. 2015;282:4289–94.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33:543–8.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Hultman T, Stahl S, Hornes E, Uhlen M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989;17:4937–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Higuchi RG, Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989;17:5865.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Gyllensten UB, Erlich HA. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA. 1988;85:7652–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun. 2016;7:10431.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Miura H, Gurumurthy CB, Sato T, Sato M, Ohtsuka M. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep. 2015;5:12799.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Maresca M, Lin VG, Guo N, Yang Y. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 2013;23:539–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. 2014;5:5560.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, et al. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics. 2016;17:979.

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep. 2016;14:2263–72.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C, Renault B, et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA. 1994;91:8969–73.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Amos-Landgraf JM, Kwong LN, Kendziorski CM, Reichelderfer M, Torrealba J, Weichert J, et al. A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci USA. 2007;104:4036–41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Mashimo T, Takizawa A, Kobayashi J, Kunihiro Y, Yoshimi K, Ishida S, et al. Generation and characterization of severe combined immunodeficiency rats. Cell Rep. 2012;2:685–94.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Bosma GC, Fried M, Custer RP, Carroll A, Gibson DM, Bosma MJ. Evidence of functional lymphocytes in some (leaky) scid mice. J Exp Med. 1988;167:1016–33.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12:786–98.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, et al. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet. 2017;26:109–23.

    PubMed  Google Scholar 

  89. 89.

    Ebihara C, Ebihara K, Aizawa-Abe M, Mashimo T, Tomita T, Zhao M, et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet. 2015;24:4238–49.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Nguyen TL, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015;8:1–16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (25890011 and 16K18402 to KY, 16H06276 and 26290033 to MT). We would like to thank our staff in the animal facility of Osaka University for discussions regarding this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuto Yoshimi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshimi, K., Mashimo, T. Application of genome editing technologies in rats for human disease models. J Hum Genet 63, 115–123 (2018). https://doi.org/10.1038/s10038-017-0346-2

Download citation

Further reading

Search

Quick links