Review | Published:

Biopolymers, Bio-related Polymer Materials

Antimicrobial cationic polymers: from structural design to functional control

Polymer Journal volume 50, pages 3344 (2018) | Download Citation

Abstract

Antimicrobial cationic polymers mainly contain two functional components: the cationic groups and the hydrophobic groups. The antimicrobial activity is influenced by the type, amount, location and distribution of these two components. This review summarizes the designs and syntheses of antimicrobial cationic polymers by controlling the above two factors. It involves the structural designs from primary to secondary structures, from covalent to noncovalent syntheses and from bulk to surface. Furthermore, it will discuss how to advance structural designs toward functional controls for optimizing the antimicrobial performances and biocompatibility of antimicrobial cationic polymers. It is anticipated that this review will provide some guidelines for developing molecular engineering of antimicrobial cationic polymers with tailor-made structures and functions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 37, 281–339 (2012).

  2. 2.

    & Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4, 46–71 (2012).

  3. 3.

    , & Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 21, 1235–1246 (2000).

  4. 4.

    , , , , & Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 7, 201–222 (2012).

  5. 5.

    , & The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8, 1359–1384 (2007).

  6. 6.

    , , , & Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv. 2, 4031–4044 (2012).

  7. 7.

    , , , , & Antimicrobial polymers. Adv. Healthc. Mater. 3, 1969–1985 (2014).

  8. 8.

    Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng. 286, 63–87 (2001).

  9. 9.

    & Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl. Microbiol. Biot. 89, 475–492 (2011).

  10. 10.

    , , , & Infectious disease: connecting innate immunity to biocidal polymers. Mat. Sci. Eng. R 57, 28–64 (2007).

  11. 11.

    , & Antibiotic-containing polymers for localized, sustained drug delivery. Adv. Drug Deliv. Rev. 78, 77–87 (2014).

  12. 12.

    & Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 63, A1–A29 (2015).

  13. 13.

    , , & Supramolecular antibiotic switches: a potential strategy for combating drug resistance. Chem. Eur. J. 22, 11114–11121 (2016).

  14. 14.

    , , , & Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 48, 7–13 (2001).

  15. 15.

    , & Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React. Funct. Polym. 67, 355–366 (2007).

  16. 16.

    , & The bactericidal properties of the quaternary salts of hexamethylenetetramine. J. Exp. Med. 23, 577–599 (1916).

  17. 17.

    & Quaternary ammonium compounds. Annu. Rev. Microbiol. 1, 173–192 (1947).

  18. 18.

    , , , , , , , , , & Evaluation of poly(styrene-4-sulfonate) as a preventive agent for conception and sexually transmitted diseases. J. Androl. 21, 862–875 (2000).

  19. 19.

    , & The synthesis, characterization and antibacterial activity of quaternized poly(2,6-dimethyl-1,4-phenylene oxide)s modified with ammonium and phosphonium salts. React. Funct. Polym. 70, 944–950 (2010).

  20. 20.

    , , , , & Study of quaternary ‘onium’salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’styrene-divinylbenzene copolymers. React. Funct. Polym. 55, 151–158 (2003).

  21. 21.

    & Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10, 1416–1428 (2009).

  22. 22.

    , , & Tuning anti-microbial activity of poly (4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions. J. Mater. Sci. Mater. Med. 21, 717–724 (2010).

  23. 23.

    , , & Designing surfaces that kill bacteria on contact. Proc. Natl Acad. Sci. USA 98, 5981–5985 (2001).

  24. 24.

    , , & Polymer surfaces derivatized with poly (vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng. 79, 465–471 (2002).

  25. 25.

    , & Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew. Chem. Int. Ed. 120, 1270–1274 (2008).

  26. 26.

    , , , , , & Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorgan. Med. Chem. 12, 853–857 (2004).

  27. 27.

    , , , & Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 34, 340–437 (2014).

  28. 28.

    , , , , & Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9, 2980–2983 (2008).

  29. 29.

    , , , , , , , , & Structural characterization of biocidal oligoguanidines. Macromol. Rapid Commun. 24, 567–570 (2003).

  30. 30.

    , , , , & Antimicrobial Polycarbonates: investigating the impact of nitrogen-containing heterocycles as quaternizing agents. Macromolecules 47, 1285–1291 (2014).

  31. 31.

    & Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 14, 9906–9946 (2013).

  32. 32.

    , , , , , & Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14, 4331–4339 (2013).

  33. 33.

    , & Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J. Appl. Polym. Sci. 94, 635–642 (2004).

  34. 34.

    , , , , , , & Effects of cyclic vs. acyclic hydrophobic subunits on the chemical structure and biological properties of nylon-3 co-polymers. ACS Macro. Lett. 2, 753–756 (2013).

  35. 35.

    , , , , , , , , , , , & Robust antimicrobial compounds and polymers derived from natural resin acids. Chem. Commun. 48, 916–918 (2012).

  36. 36.

    , & Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes. Prog. Polym. Sci. 35, 511–577 (2010).

  37. 37.

    , , , , , & Main-chain imidazolium oligomer material as a selective biomimetic antimicrobial agent. Biomaterials 33, 8625–8631 (2012).

  38. 38.

    , , , & Synthesis and characterization of novel antimicrobial cationic polyelectrolytes. Eur. Polym. J. 40, 2373–2379 (2004).

  39. 39.

    , , , , , , , & Broad-spectrum antimicrobial polycarbonate hydrogels with fast degradability. Biomacromolecules 16, 1169–1178 (2015).

  40. 40.

    , , , , , , , , & Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).

  41. 41.

    & Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).

  42. 42.

    , , & Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org. Lett. 6, 557–560 (2004).

  43. 43.

    , , , , , , , & Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. Langmuir 22, 11255–11266 (2006).

  44. 44.

    , , & Antibacterial activities of polystyrene-block-poly (4-vinyl pyridine) and poly (styrene-random-4-vinyl pyridine). Eur. Polym. J. 40, 2819–2822 (2004).

  45. 45.

    , , , & Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules 12, 3581–3591 (2011).

  46. 46.

    , , , , & Quaternary ammonium functionalized poly (propylene imine) dendrimers as effective antimicrobials: Structure-activity studies. Biomacromolecules 1, 473–480 (2000).

  47. 47.

    , , , , , , , , & Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Org. Biomol. Chem. 9, 5238–5248 (2011).

  48. 48.

    , , , & Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers. Macromol. Biosci. 13, 1285–1299 (2013).

  49. 49.

    & Foldamers with heterogeneous backbones. Acc. Chem. Res. 41, 1399–1408 (2008).

  50. 50.

    & Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

  51. 51.

    & The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4, 529–536 (2006).

  52. 52.

    , , & Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov. 11, 37–51 (2012).

  53. 53.

    , & Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 7, 245–250 (2009).

  54. 54.

    Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005).

  55. 55.

    , & Surface plasmon resonance analysis of antimicrobial peptide-membrane interactions: affinity & mechanism of action. Lett. Pept. Sci. 10, 475–485 (2003).

  56. 56.

    , , , , , , , , , & Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Sci. China Chem. 60, 1–5 (2017).

  57. 57.

    & Mode of action of linear amphipathic α-helical antimicrobial peptides. Peptide Science 47, 451–463 (1998).

  58. 58.

    , , , , , , & Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc. Natl Acad. Sci. USA 105, 2794–2799 (2008).

  59. 59.

    , , & Antimicrobial 14-helical β-peptides: potent bilayer disrupting agents. Biochemistry 43, 9527–9535 (2004).

  60. 60.

    & De novo design, synthesis, and characterization of antimicrobial β-peptides. J. Am. Chem. Soc. 123, 7553–7559 (2001).

  61. 61.

    , & De novo design of antibacterial β-peptides. J. Am. Chem. Soc. 121, 12200–12201 (1999).

  62. 62.

    , , , & Antibiotics: non-haemolytic β-amino-acid oligomers. Nature 404, 565–565 (2000).

  63. 63.

    & Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 127, 4128–4129 (2005).

  64. 64.

    , , , , , , & Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 129, 15474–15476 (2007).

  65. 65.

    , & Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules 13, 1632–1641 (2012).

  66. 66.

    , , & Antibacterial studies of cationic polymers with alternating, random, and uniform backbones. ACS Chem. Biol. 6, 590–599 (2011).

  67. 67.

    , , , , & Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843 (2008).

  68. 68.

    & Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 49–66 (2013).

  69. 69.

    & Synthetic mimics of antimicrobial peptides—a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chem. Eur. J. 15, 11784–11800 (2009).

  70. 70.

    , , , , & Nylon-3 polymers active against drug-resistant Candida albicans biofilms. J. Am. Chem. Soc. 137, 2183–2186 (2015).

  71. 71.

    , , , , , , & Nylon-3 polymers with selective antifungal activity. J. Am. Chem. Soc. 135, 5270–5273 (2013).

  72. 72.

    , , , & Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth. J. Am. Chem. Soc. 136, 14498–14504 (2014).

  73. 73.

    , , , , , , , , & Ternary nylon-3 copolymers as host-defense peptide mimics: beyond hydrophobic and cationic subunits. J. Am. Chem. Soc. 136, 14530–14535 (2014).

  74. 74.

    , , , , , , , , & Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J. Am. Chem. Soc. 136, 4410–4418 (2014).

  75. 75.

    , , , , , , , & Structure–activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans. J. Am. Chem. Soc. 136, 4333–4342 (2014).

  76. 76.

    , , & Nylon-3 polymers that enable selective culture of endothelial cells. J. Am. Chem. Soc. 135, 16296–16299 (2013).

  77. 77.

    , , , & The design, synthesis and biological activity study of nylon-3 polymers as mimics of host defense peptides. Acta Polym. Sin. 10, 1300–1311 (2016).

  78. 78.

    , , , & Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

  79. 79.

    , , , , , , & New cucurbituril homologues: synthesis, isolation, characterization, and X-ray crystal structure of cucurbit[n]uril (n=5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000).

  80. 80.

    , , , , , & Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl. Mater. Interfaces 8, 30048–30057 (2016).

  81. 81.

    , , , , , & A supramolecular antibiotic switch for antibacterial regulation. Angew. Chem. Int. Ed. 54, 13208–13213 (2015).

  82. 82.

    , , , , , & Supramolecular conjugated polymer systems with controlled antibacterial activity. Langmuir 33, 1116–1120 (2017).

  83. 83.

    , , , , & Polypseudorotaxane constructed from cationic polymer with cucurbit[7]uril for controlled antibacterial activity. ACS Macro. Lett. 5, 1109–1113 (2016).

  84. 84.

    , , & Antimicrobial action of antibiotics of ɛ-poly-L-lysine. J. Antibiot. 37, 1449–1455 (1984).

  85. 85.

    , , , , , , & An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine. Chem. Commun. 53, 5870–5873 (2017).

  86. 86.

    , , , , , & Supramolecular conjugated polymer materials for in situ pathogen detection. ACS Appl. Mater. Interfaces 8, 31550–31557 (2016).

  87. 87.

    Permanently microbicidal materials coatings. J. Mater. Chem. 17, 2479–2482 (2007).

  88. 88.

    & Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35, 780–789 (2006).

  89. 89.

    & Non-leaching surfaces capable of killing microorganisms on contact. J. Mater. Chem. 19, 7796–7806 (2009).

  90. 90.

    , & Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

  91. 91.

    & Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention. Biomed. Mater. 3, 034003 (2008).

  92. 92.

    & Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014).

  93. 93.

    , , , & Manipulating sticky and non-sticky properties in a single material. Angew. Chem. Int. Ed. 50, 6102–6104 (2011).

  94. 94.

    , , , , , , , , & A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 10, 149–156 (2011).

Download references

Acknowledgements

The research was supported by National Natural Science Foundation of China (21434004). We thank to Dr Jiang-Fei Xu and Dr Haotian Bai for helpful discussion.

Author information

Author notes

    • Yuchong Yang
    • , Zhengguo Cai
    •  & Zehuan Huang

    These authors contributed equally to this work.

Affiliations

  1. Department of Chemistry, Tsinghua University, Beijing, China

    • Yuchong Yang
    • , Zhengguo Cai
    • , Zehuan Huang
    • , Xiaoyan Tang
    •  & Xi Zhang

Authors

  1. Search for Yuchong Yang in:

  2. Search for Zhengguo Cai in:

  3. Search for Zehuan Huang in:

  4. Search for Xiaoyan Tang in:

  5. Search for Xi Zhang in:

Competing interests

The authors declare no conflict of interest.

Corresponding author

Correspondence to Xi Zhang.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/pj.2017.72

Further reading