Optically Active Polysilanes. Ten Years of Progress and New Polymer Twist for Nanoscience and Nanotechnology

Abstract

In the family of optically active synthetic polymers, optically active polysilanes, which comprise a helical main chain of silicon-silicon single bonds and chiral and/or achiral side groups, exhibit unique absorption, circular dichroism, and fluorescence spectra around 300–400 nm due to σ-conjugation. Since the first brief report of optically active polysilane synthesis in 1992, the field has now widened to include various homo- and copolymers of optically active poly(dialkylsilane)s, poly(dialkoxysilane)s, poly[alkyl(aryl)silane]s, and poly(diarylsilane)s. This review comprehensively covers work on (i) the relationship between side chain structure, (ii) local structure-global shape relationship, (iii) (chir)optical properties, (iv) (semi)quantitative population analysis of right- and left-handed helices based on Kuhn’s dissymmetry ratio, (v) several helical cooperativity effects, (vi) molecular imaging, (vii) inversion of screw-sense, (viii) chiroptical switch and memory, (ix) transfer and amplification of molecular chirality to aggregates, (x) cholesteric liquid crystallinity, (xi) helical supramolecular structures, and (xii) latent helicity, as consequences of side group internal interactions and other external stimuli. Such knowledge and understanding may stimulate optically active polymer research in the realm of nanomaterial science and nanotechnology at the sub-nm level as well as traditional polymer science, and may advance these polymers to new functional nanomaterials and thence to the realization of nanodevices in the future.

References

  1. 1

    S. F. Mason, Nature, 311, 19 (1984).

  2. 2

    S. F. Mason, “Chemical Evolution: Origin of the Elements, Molecules, and Living Systems”, 2nd ed., Oxford, University Press, Inc., London, 1991.

    Google Scholar 

  3. 3

    S. F. Mason, in “Circular Dichroism: Principles and Applications”, 2nd ed, N. Berova, K. Nakanishi, and R. W. Woody, Ed., Wiley-VCH, New York, N.Y., 2000, chapt. 2.

    Google Scholar 

  4. 4

    W. A. Bonner, P. R. Kavasmaneck, F. S. Martin, and J. J. Flores, Science, 186, 143 (1974).

  5. 5

    W. A. Bonner, Chirality, 12, 114 (2000).

  6. 6

    M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, and J. C. Palacios, Tetrahedron: Asymmetry, 8, 2997 (1997).

  7. 7

    M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios, and L. D. Barron, Chem. Rev., 98, 2391 (1998).

  8. 8

    M. Hasegawa, Proc. Jpn. Acad. Ser. B, 68, 9 (1992).

  9. 9

    A. Yamagata, J. Theoret. Biol., 11, 495 (1966).

  10. 10

    R. A. Harris and L. Stodolsky, Phys. Lett., Sect. B, 78, 313 (1978).

  11. 11

    D. K. Kondepudi and G. W. Nelson, Nature, 314, 438 (1985).

  12. 12

    R. A. Hegstrom, Nature, 315, 749 (1985).

  13. 13

    M. Quack, Chem. Phys. Lett., 132, 1471 (1986).

  14. 14

    L. Wiesenfeld, Mol. Phys., 64, 739 (1988).

  15. 15

    A. Salam, J. Mol. Evol., 33, 105 (1991).

  16. 16

    R. Berger and M. Quack, Chem. Phys. Chem., 1, 57 (2000).

  17. 17

    R. A. Harris, Chem. Phys. Lett., 365, 343 (2002).

  18. 18

    D. B. Cline, Ed., “Physical Origin of Homochirality in Life”, American Institute of Physics, Woodbury, N.Y., 1996.

    Google Scholar 

  19. 19

    M. Gardner, Ed., “The New Ambidextrous Universe–Symmetry and Asymmetry from Mirror Reflections to Superstrings”, 3rd rev. ed., W. H. Freeman, New York, N.Y., 1990.

    Google Scholar 

  20. 20

    H. Latel, in “Chirality–From Weak Bosons to the α-Helix”, R. Janoschek Ed., Springer-Verlag GmbH&Co., Berlin, 1991, chapt. 1.

    Google Scholar 

  21. 21

    M. Farina, Top. Stereochem., 17, 1 (1987).

  22. 22

    K. P. Meurer and F. Vögtle, Top. Curr. Chem., 127, 1 (1985).

  23. 23

    Y. Okamoto and T. Nakano, Chem. Rev., 94, 349 (1994).

  24. 24

    T. Nakano and Y. Okamoto, Macromol. Rapid Commun., 21, 603 (2000).

  25. 25

    R. J. M. Nolte, Chem. Soc. Rev., 23, 11 (1994).

  26. 26

    M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson, Science, 268, 1860 (1995).

  27. 27

    M. M. Green, J.-W. Park, T. Sato, A. Teramoto, S. Lifson, R. L. B. Selinger, and J. V. Selinger, Angew. Chem. Int. Ed., 38, 3138 (1999).

  28. 28

    M. M. Green, in “Circular Dichroism: Principles and Applications”, 2nd ed, N. Berova, K. Nakanishi, and R. W. Woody, Ed., Wiley-VCH, New York, N.Y., 2000, chapter 17.

    Google Scholar 

  29. 29

    M. M. Green, K-P. Cheon, S-Y. Yang, J-W. Park, S. Swanburg, and W. Liu, Acc. Chem. Res., 34, 672 (2001).

  30. 30

    For a book of induced optical activity in polyacetylenes. E. Yashima and Y. Okamoto, in “Circular Dichroism: Principles and Applications”, 2nd ed, N. Berova, K. Nakanishi, and R. W. Woody, Ed., Wiley-VCH, New York, N.Y., 2000, chapter 18.

    Google Scholar 

  31. 31

    For a review of optically active chromophoric polymers. L. Pu, Acta Polym., 48, 116 (1997).

  32. 32

    O. Kratky and G. Porod, Recl. Trav. Chim., 68, 1106 (1949).

  33. 33

    T. Norisuye, T. Yanaki, and H. Fujita, J. Polym. Sci., polym. Phys. Ed., 18, 547 (1980).

  34. 34

    H. Murakami, T. Norisuye, and H. Fujita, Macromolecules, 13, 345 (1980).

  35. 35

    T. Norisuye, Prog. Polym. Sci., 18, 543 (1993).

  36. 36

    H. Yamakawa, Ed. “Helical Wormlike Chains in Polymer Solutions”, Springer-Verlag GmbH&Co., Berlin, 1997.

    Google Scholar 

  37. 37

    A. Teramoto, Prog. Polym. Sci., 26, 667 (2001).

  38. 38

    M. Goodman and S.-C. Chen, Macromolecules, 3, 398 (1970).

  39. 39

    M. Goodman and S.-C. Chen, Macromolecules, 4, 625 (1971).

  40. 40

    F. Millich and G. K. Baker, Macromolecules, 2, 122 (1969).

  41. 41

    R. J. M. Nolte, A. J. M. van Beijnen, and W. Drenth, J. Am. Chem. Soc., 96, 5932 (1974).

  42. 42

    A. J. M. van Beijnen, R. J. M. Nolte, W. Drenth, and A. M. F. Hezemans, Tetrahedron, 32, 2017 (1976).

  43. 43

    P. Pino and G. P. Lorenzi, J. Am. Chem. Soc., 82, 4745 (1960).

  44. 44

    P. Pino, F. Ciardelli, G. Montagnoli, and O. Pieroni, J. Polym. Sci., Polym. Lett. Ed., 5, 307 (1967).

  45. 45

    C. Carlini, P. Pino, and F. Ciardelli, Makromol. Chem., 119, 244 (1968).

  46. 46

    Y. Okamoto, K. Suzuki, K. Ohta, K. Hatada, and H. Yuki, J. Am. Chem. Soc., 101, 4768 (1979).

  47. 47

    P. C. J. Kamer, M. C. Cleij, R. J. M. Nolte, T. Harada, A. M. F. Hezemans, and W. Drenth, J. Am. Chem. Soc., 110, 1581 (1988).

  48. 48

    M. M. Green, R. A. Gross, F. C. Schilling, K. Zero, and C. C. Crosby III, Macromolecules, 21, 1839 (1988).

  49. 49

    T. J. Deming and B. M. Novak, J. Am. Chem. Soc., 114, 7926 (1992).

  50. 50

    Y. Ito, E. Ihara, and M. Murakami, Angew. Chem. Int. Ed. Engl., 31, 1509 (1992).

  51. 51

    M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, Science, 270, 966 (1995).

  52. 52

    F. Takei, K. Yanai, K. Onitsuka, and S. Takahashi, Angew. Chem. Int. Ed. Engl., 35, 1554 (1996).

  53. 53

    Y. Itoh, T. Ohara, R. Shima, and M. Suginome, J. Am. Chem. Soc., 118, 9188 (1996).

  54. 54

    E. Ramos, J. Bosch, J.-L. Serrano, T. Sierra, and J. Veciana, J. Am. Chem. Soc., 118, 4703 (1996).

  55. 55

    D. B. Amabilino, E. Ramos, J.-L. Serrano, T. Sierra, and J. Veciana, J. Am. Chem. Soc., 120, 9126 (1998).

  56. 56

    Y. Ito, T. Miyake, S. Hatano, R. Shima, T. Ohara, and M. Suginome, J. Am. Chem. Soc., 120, 11880 (1998).

  57. 57

    F. Takei, H. Hayashi, K. Onitsuka, N. Kobayashi, and S. Takahashi, Angew. Chem. Int. Ed. Engl., 41, 4092 (2001).

  58. 58

    F. Takei, H. Hayashi, K. Onitsuka, and S. Takahashi . Polym. J., 33, 310 (2001).

  59. 59

    F. Feng, T. Miyashita, F. Takei, K. Onitsuka, and S. Takahashi, Chem. Lett., 764 (2001).

  60. 60

    J. J. L. M. Cornelissen, J. J. J. M. Donners, R. de Gelder, W. S. Graswinckel, G. A. Metselaar, A. E. Rowan, N. A. J. M. Sommerdijk, and R. J. M. Nolte, Science, 293, 676 (2001).

  61. 61

    J. J. L. M. Cornelissen, W. S. Graswinckel, P. J. H. M. Adams, G. H. Nachtegaal, A. P. M. Kentgens, N. A. J. M. Sommerdijk, and R. J. M. Nolte, J. Polym. Sci., Part A: Polym. Chem., 39, 4255 (2001).

  62. 62

    Y. Yamada, T. Kawai, J. Abe, and T. Iyoda, J. Polym. Sci., Part A: Polym. Chem., 40, 399 (2002).

  63. 63

    M. M. Green, C. Andreola, B. Muñoz, M. P. Reidy, and K. Zero, J. Am. Chem. Soc., 110, 4043 (1988).

  64. 64

    M. M. Green, M. P. Reidy, R. J. Johnson, G. Darling, D. J. O’Leary, and G. Willson, J. Am. Chem. Soc., 111, 6452 (1989).

  65. 65

    Y. Okamoto, M. Matsuda, T. Nakano, and E. Yashima, Polym. J., 25, 391 (1993).

  66. 66

    M. M. Green, C. Khatri, and N. C. Peterson, J. Am. Chem. Soc., 115, 4941 (1993).

  67. 67

    M. Müller and R. Zentel, Macromolecules, 27, 4404 (1994).

  68. 68

    G. Maxein and R. Zentel, Macromolecules, 28, 8438 (1995).

  69. 69

    K. Maeda, M. Matsuda, T. Nakano, and Y. Okamoto, Polym. J., 27, 141 (1995).

  70. 70

    M. M. Green, B. A. Garetz, B. Munoz, and H.-P. Chang, J. Am. Chem. Soc., 117, 4181 (1995).

  71. 71

    M. Müller and R. Zentel, Macromolecules, 29, 1609 (1996).

  72. 72

    J. M. Guenet, H. S. J. Jeon, C. Khatri, S. K. Jha, N. P. Balsara, M. M. Green, A. Brulet, and A. Thierry, Macromolecules, 30, 4590 (1997).

  73. 73

    C. A. Khatri, Y. Pavlova, M. M. Green, and H. Morawetz, J. Am. Chem. Soc., 119, 6991 (1997).

  74. 74

    S. Mayer, G. Maxein, and R. Zentel, Macromolecules, 31, 8522 (1998).

  75. 75

    K. Maeda and Y. Okamoto, Macromolecules, 31, 5164 (1998).

  76. 76

    K. Maeda and Y. Okamoto, Macromolecules, 31, 1046 (1998).

  77. 77

    S. Mayer, G. Maxein, and R. Zentel, Macromolecules, 31, 8522 (1998).

  78. 78

    K. Maeda and Y. Okamoto, Macromolecules, 32, 974 (1999).

  79. 79

    S. K. Jha, K.-S. Cheon, M. M. Green, and J. V. Selinger, J. Am. Chem. Soc., 121, 1665 (1999).

  80. 80

    K. Ute, Y. Fukunishi, S. K. Jha, K.-S. Cheon, B. Munoz, K. Hatada, and M. M. Green, Macromolecules, 32, 1304 (1999).

  81. 81

    H. Gu, Y. Nakamura, T. Sato, A. Teramoto, M. M. Green, and C. Andreola, Polymer, 40, 849 (1999).

  82. 82

    K. S. Cheon, J. V. Selinger, and M. M. Green, Angew. Chem. Int. Ed., 39, 1482 (2000).

  83. 83

    J. Li, G. B. Schuster, K.-S. Cheon, M. M. Green, and J. V. Selinger, J. Am. Chem. Soc., 122, 2603 (2000).

  84. 84

    O. Pieroni, F. Matera, and F. Ciardelli, Tetrahedron Lett., 7, 597 (1972).

  85. 85

    F. Ciardelli, S. Lanzillo, and O. Pieroni, Macromolecules, 7, 174 (1974).

  86. 86

    J. S. Moore, C. B. Gorman, and R. H. Grubbs, J. Am. Chem. Soc., 113, 1704 (1991).

  87. 87

    E. Yashima, T. Matsushima, and Y. Okamoto, J. Am. Chem. Soc., 117, 11596 (1995).

  88. 88

    E. Yashima, T. Nimura, T. Matsushima, and Y. Okamoto, J. Am. Chem. Soc., 118, 9800 (1996).

  89. 89

    E. Yashima, T. Matsushima, and Y. Okamoto, J. Am. Chem. Soc., 119, 6345 (1997).

  90. 90

    E. Yashima, K. Maeda, and Y. Okamoto, J. Am. Chem. Soc., 120, 8895 (1998).

  91. 91

    E. Yashima, K. Maeda, and Y. Okamoto, Nature, 399, 449 (1999).

  92. 92

    H. Nakako, R. Nomura, M. Tabata, and T. Masuda, Macromolecules, 32, 2861 (1999).

  93. 93

    T. Aoki, Y. Kobayashi, T. Kaneko, E. Oikawa, Y. Yamamura, Y. Fujita, M. Teraguchi, R. Nomura, and T. Masuda, Macromolecules, 32, 79 (1999).

  94. 94

    R. Nomura, Y. Fukushima, H. Nakako, and T. Masuda, J. Am. Chem. Soc., 122, 8830 (2000).

  95. 95

    H. Nakako, Y. Mayahara, R. Nomura, M. Tabata, and T. Masuda, Macromolecules, 33, 3978 (2000).

  96. 96

    H. Nakako, R. Nomura, and T. Masuda, Macromolecules, 34, 1496 (2001).

  97. 97

    R. Nomura, J. Tabei, and T. Masuda, J. Am. Chem. Soc., 123, 8430 (2001).

  98. 98

    H. Onouchi, K. Maeda, and E. Yashima, J. Am. Chem. Soc., 123, 7441 (2001).

  99. 99

    E. Yashima, K. Maeda, and O. Sato, J. Am. Chem. Soc., 123, 8159 (2001).

  100. 100

    E. Yashima, Anal. Sci., 18, 3 (2002).

  101. 101

    A. P. H. J. Schenning, M. Fransen, and E. W. Meijer, Macromol. Rapid Commun., 23, 265 (2002).

  102. 102

    M. Lemaire, D. Delabouglise, R. Garreau, A. Guy, and J. Roncali, J. Chem. Soc., Chem. Commun., 658 (1988).

  103. 103

    M. Andersson, P. O. Ekeblad, T. Hjertberg, O. Wennerström, and O. Inganäs, Polym. Commun., 32, 546 (1991).

  104. 104

    M. M. Bouman and E. W. Meijer, Adv. Mater., 7, 385 (1995).

  105. 105

    G. Bidan, S. Guillerez, and V. Sorokin, Adv. Mater., 8, 157 (1996).

  106. 106

    B. M. W. Langeveld-Voss, R. A. J. Janssen, M. P. T. Christiaans, S. C. J. Meskers, H. P. J. M. Dekkers, and E. M. Meijer, J. Am. Chem. Soc., 118, 4908 (1996).

  107. 107

    F. Andreani, L. Angiolini, D. Caretta, and E. Salatelli, J. Mater. Chem., 8, 1109 (1998).

  108. 108

    E. R. Lermo, B. M. W. Langeveld-Voss, R. A. J. Janssen, and E. W. Meijer, Chem. Commun., 791 (1999).

  109. 109

    E. Yashima, H. Goto, and Y. Okamoto, Macromolecules, 32, 7942 (1999).

  110. 110

    B. M. W. Langeveld-Voss, R. J. M. Waterval, R. A. J. Janssen, and E. W. Meijer, Macromolecules, 32, 227 (1999).

  111. 111

    Z.-B. Zhang, M. Fujiki, M. Motonaga, H. Nakashima, K. Torimitsu, and H.-Z. Tang, Macromolecules, 35, 941 (2002).

  112. 112

    E. Peeters, M. P. T. Christiaans, R. A. J. Janssen, H. F. M. Schoo, H. P. J. M. Dekkers, and E. W. Meijer, J. Am. Chem. Soc., 119, 9909 (1997).

  113. 113

    E. Peeters, A. Delmotte, R. A. J. Janssen, and E. W. Meijer, Adv. Mater., 9, 493 (1997).

  114. 114

    A. Goodwin and B. M. Novak, Macromolecules, 27, 5520 (1994).

  115. 115

    M.-P. Nieh, A. A. Goodwin, J. R. Stewart, B. M. Novak, and D. A. Hoagland, Macromolecules, 31, 3151 (1998).

  116. 116

    D. S. Schiltzer and B. M. Novak, J. Am. Chem. Soc., 120, 2196 (1998).

  117. 117

    A. M. Heintz and B. M. Novak, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 39(2), 429 (1998).

  118. 118

    J.-H. Fuhrhop, P. Blumtritt, C. Lehmann, and P. Luger, J. Am. Chem. Soc., 113, 7437 (1991).

  119. 119

    D. A. Frankel and D. F. O’Brien, J. Am. Chem. Soc., 116, 10057 (1994).

  120. 120

    J. M. Schnur, B. R. Ratna, J. V. Selinger, A. Singh, G. Jyothi, and K. R. K. Easwaran, Science, 264, 945 (1994).

  121. 121

    A. F. Drake, P. Udvarhelyi, D. J. Ando, D. Bloor, J. S. Obhi, and S. Mann, Polymer, 30, 1043 (1989).

  122. 122

    M. Salmon and G. Bidan, J. Electrochem. Soc., 132, 1897 (1985).

  123. 123

    D. Delabouglise and F. Garnier, Synth. Met., 39, 117 (1990).

  124. 124

    M. R. Majidi, L. A. P. Kane-Maguire, and G. G. Wallace, Polymer, 35, 3113 (1994).

  125. 125

    P. C. Innis, I. D. Norris, L. A. P. Kane-Maguire, and G. G. Wallace, Macromolecules, 31, 6521 (1995).

  126. 126

    S.-J. Su and N. Kuramoto, Chem. Lett., 504 (2001).

  127. 127

    S.-J. Su and N. Kuramoto, Macromolecules, 34, 7249 (2001).

  128. 128

    R. Fiesel and U. Scherf, Acta Polym., 49, 445 (1998).

  129. 129

    M. Oda, H.-G. Nothofer, G. Lieser, U. Scherf, S. C. Meskers, and D. Neher, Adv. Mater., 12, 362 (2000).

  130. 130

    M. Oda, S. C. J. Meskers, H. G. Nothofer, U. Scherf, and D. Neher, Synth. Met., 111, 575 (2000).

  131. 131

    H.-Z. Tang, M. Fujiki, and T. Sato, Macromolecules, 35, 6439 (2002).

  132. 132

    M. Leclerc, J. Polym. Sci., A: Polym. Chem., 39, 2867 (2001).

  133. 133

    D. Neher, Macromol. Rapid Commun., 22, 1365 (2001).

  134. 134

    H.-Z. Tang, M. Fujiki, and M. Motonaga, Polymer, 43, 6213 (2002).

  135. 135

    J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, and D. Moras, Proc. Natl. Acad. Sci. U.S.A., 84, 2565 (1987).

  136. 136

    U. Koert, M. M. Harding, and J.-M. Lehn, Nature, 346, 339 (1990).

  137. 137

    E. C. Constable, Angew. Chem., Int. Ed. Engl., 30, 1450 (1991).

  138. 138

    Y. Dai, T. J. Katz, and D. A. Nichols, Angew. Chem., Int. Ed. Engl., 35, 2109 (1996).

  139. 139

    T. Takata, Y. Furusho, K.-I. Murakawa, T. Endo, H. Matsuoka, T. Hirasa, J. Matsuo, and M. Sisido, J. Am. Chem. Soc., 120, 4530 (1998).

  140. 140

    A. Williams, Chem. Eur. J., 3, 15 (1997).

  141. 141

    T. Yokozawa, R. B. Prince, and J. S. Moore, J. Am. Chem. Soc., 121, 2643 (1999).

  142. 142

    R. Fiesel, C. E. Halkyard, M. E. Rampey, L. Kloppenburg, S. L. Studer-Martinez, U. Scherf, and U. H. F. Bunz, Macromol. Rapid Commun., 20, 107 (1999).

  143. 143

    E. Yashima, K. Maeda, and T. Yamanaka, J. Am. Chem. Soc., 122, 7813 (2000).

  144. 144

    R. B. Prince, L. Brunsveld, E. W. Meijer, and J. S. Moore, Angew. Chem., Int. Ed., 39, 228 (2000).

  145. 145

    P. Urnes and P. Doty, Adv. Protein Chem., 16, 401 (1961).

  146. 146

    Poly-α-Amino Acids”, G. D. Fasman, Ed., Marcel Dekker, New York, N.Y. 1967.

  147. 147

    A. Teramoto and H. Fujita, Adv. Polym. Sci., 18, 65 (1975).

  148. 148

    A. Teramoto and H. Fujita, J. Macromol. Sci., Rev. Macromol. Chem., C15, 165 (1976).

  149. 149

    A. Chakrabartty and R. L. Baldwin, Adv. Protein Chem., 46, 141 (1995).

  150. 150

    T. Nakano and Y. Okamoto, Chem. Rev., 101, 4013 (2001).

  151. 151

    E. Lacroix, A. R. Viguera, and L. Serrano, J. Mol. Biol., 284, 173 (1998).

  152. 152

    J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, and N. A. J. M. Sommerdijk, Chem. Rev., 101, 4039 (2001).

  153. 153

    K. Matyjaszewski, J. Inorg. Organomet. Polym., 2, 5 (1992).

  154. 154

    H. Frey, M. Möller, and K. Matyjaszewski, Macromolecules, 27, 1814 (1994).

  155. 155

    H. Frey, M. Möller, A. Turetskii, B. Lots, and K. Matyjaszewski, Macromolecules, 28, 5498 (1995).

  156. 156

    M. Fujiki, J. Am. Chem. Soc., 116, 6017 (1994).

  157. 157

    M. Fujiki, J. Am. Chem. Soc., 116, 11976 (1994).

  158. 158

    M. Fujiki, Appl. Phys. Lett., 65, 3251 (1994).

  159. 159

    M. Fujiki, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Sci.), 37(2), 454 (1996).

  160. 160

    K. Obata, C. Kabuto, and M. Kira, J. Am. Chem. Soc., 119, 11345 (1997).

  161. 161

    K. Shinohara, T. Aoki, T. Kaneko, and E. Oikawa, Chem. Lett., 361 (1997).

  162. 162

    K. Obata and M. Kira, Macromolecules, 31, 4666 (1998).

  163. 163

    M. Fujiki, S. Toyoda, C.-H. Yuan, and H. Takigawa, Chirality, 10, 667 (1998).

  164. 164

    T. Ichikawa, Y. Yamada, J. Kumagai, and M. Fujiki, Chem. Phys. Lett., 306, 275 (1999).

  165. 165

    K. Terao, T. Terao, A. Teramoto, N. Nakamura, I. Terakawa, T. Sato, and M. Fujiki, Macromolecules, 34, 2682 (2001).

  166. 166

    J. Watanabe, H. Kamee, and M. Fujiki, Polym. J., 33, 495 (2001).

  167. 167

    K. Terao, Y. Terao, A. Teramoto, N. Nakamura, M. Fujiki, and T. Sato, Macromolecules, 34, 4519 (2001).

  168. 168

    K. Terao, Y.-I. Terao, A. Teramoto, N. Nakamura, M. Fujiki, and T. Sato, Macromolecules, 34, 6519 (2001).

  169. 169

    T. Natsume, L. Wu, T. Sato, K. Terao, A. Teramoto, and M. Fujiki, Macromolecules, 34, 7899 (2001).

  170. 170

    T. Sanji, T. Takase, and H. Sakurai, J. Am. Chem. Soc., 123, 12690 (2001).

  171. 171

    T. Sato, K. Terao, A. Teramoto, and M. Fujiki, Macromolecules, 35, 2141 (2002).

  172. 172

    K. Okoshi, H. Kamee, G. Suzaki, M. Tokita, M. Fujiki, and J. Watanabe, Macromolecules, 35, 4556 (2002).

  173. 173

    M. Fujiki, J. Am. Chem. Soc., 122, 3336 (2000).

  174. 174

    M. Fujiki, Macromol. Rapid Commun., 22, 669 (2001).

  175. 175

    M. Fujiki, J. R. Koe, H. Nakashima, M. Motonaga, K. Terao, and A. Teramoto, J. Am. Chem. Soc., 123, 6253 (2001).

  176. 176

    A. Teramoto, K. Terao, Y. Terao, N. Nakamura, T. Sato, and M. Fujiki, J. Am. Chem. Soc., 123, 12303 (2001).

  177. 177

    M. Fujiki, M. Motonaga, H.-Z, Tang, K. Torimitsu, Z.-B. Zhang, J. R. Koe, J. Watanabe, K. Terao, T. Sato, and A. Teramoto, Chem. Lett., 1218 (2001).

  178. 178

    M. Fujiki, H.-Z. Tang, M. Motonaga, K. Torimitsu, J. R. Koe, J. Watanabe, T. Sato, and A. Teramoto, Silicon Chem. 1, 67 (2002).

  179. 179

    D. Terunuma, K. Nagumo, N. Kamata, K. Matsuoka, and H. Kuzuhara, Chem. Lett., 681 (1998).

  180. 180

    S. Toyoda and M. Fujiki, Chem. Lett., 699 (1999).

  181. 181

    H. Nakashima, M. Fujiki, and J. R. Koe, Macromolecules, 32, 7707 (1999).

  182. 182

    D. Terunuma, K. Nagumo, N. Kamata, K. Matsuoka, and H. Kuzuhara, Polym. J., 32, 113 (2000).

  183. 183

    H. Nakashima, M. Fujiki, J. R. Koe, and M. Motonaga, J. Am. Chem. Soc., 123, 1963 (2001).

  184. 184

    S. Toyoda and M. Fujiki, Macromolecules, 34, 640 (2001).

  185. 185

    H. Nakashima, J. R. Koe, K. Torimitsu, and M. Fujiki, J. Am. Chem. Soc., 123, 4877 (2001).

  186. 186

    P. Dellaportas, R. G. Jones, and S. J. Holder, Macromol. Rapid Commun., 23, 99 (2002).

  187. 187

    J. R. Koe, M. Fujiki, and H. Nakashima, J. Am. Chem. Soc., 121, 9734 (1999).

  188. 188

    J. R. Koe, M. Fujiki, M. Motonaga, and H. Nakashima, Chem. Commun., 389 (2000).

  189. 189

    J. R. Koe, M. Fujiki, M. Motonaga, and H. Nakashima, Macromolecules, 34, 1082 (2001).

  190. 190

    For optically active poly(dialkoxysilane), J. R. Koe, M. Motonaga, M. Fujiki, and R. West, Macromolecules, 34, 706 (2001).

  191. 191

    M. Fujiki, Macromol. Rapid Commun., 22, 539 (2001).

  192. 192

    M. Fujiki and J. R. Koe, in “Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications”, R. G. Jones, W. Ando, and J. Chojnowski, Ed., Kluwer Academic Publisher, Dordrecht, NL, 2000, chapt. 24.

    Google Scholar 

  193. 193

    J. R. Koe, M. Fujiki, H. Nakashima, and M. Motonaga, in “Synthetic Macromolecules with Higher Structural Order”, I. M. Khan, Ed. ACS Advance in Chemistry Series No. 812, US (2002, March, Oxford).

  194. 194

    K. Takeda, J. Phys. Soc. Jpn., Suppl.B, 1 (1994).

  195. 195

    K. Takeda and K. Shiraishi, Comments Cond. Mat. Phys., 18, 91 (1997).

  196. 196

    N. Matsumoto, Jpn. J. Appl. Phys., 37, 5425 (1998).

  197. 197

    S. Abe, J. Phys. Soc. Jpn., 58, 62 (1989).

  198. 198

    H. Tachibana, Y. Kawabata, S. Koshihara, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev., B, Condens. Matter, 44, 5487 (1991).

  199. 199

    S. Abe, M. Schreiber, W. P. Su, and J. Yu, Phys. Rev., B, Condens. Matter, 45, 9432 (1992).

  200. 200

    R. Nötzel and K. H. Ploog, Int. J. Mod. Phys. B, 7, 2743 (1993).

  201. 201

    S. Glutsch and F. Bechstedt, Phys. Rev., B, Condens. Matter, 47, 4315 (1993).

  202. 202

    M. Schreiber and S. Abe, Synth. Met., 55, 50 (1993).

  203. 203

    X.-F. He, Phys. Rev., B, Condens. Matter, 43, 2063 (1991).

  204. 204

    K. Sakamoto, K. Obata, H. Hirata, M. Nakajima, and H. Sakurai, J. Am. Chem. Soc., 111, 7461 (1989).

  205. 205

    K. Sakamoto, M. Yoshida, and H. Sakurai, Macromolecules, 23, 4494 (1990).

  206. 206

    H. Sakurai and M. Yoshida, in “Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications”, 2nd ed, R. G. Jones, W. Ando, and J. Chojnowski, Ed., Kluwer Academic Publisher, Dordrecht, NL, 2000, chapter 13.

    Google Scholar 

  207. 207

    R. West, J. Organomet. Chem., 300, 327 (1986).

  208. 208

    R. D. Miller and J. Michl, Chem. Rev., 89, 1359 (1989).

  209. 209

    J. M. Ziegler and F. W. G. Fearson, Ed., “Silicon-based Polymer Science”, Advances in Chemistry Series, 224, American Chemical Society, Washington, D.C., 1990.

    Google Scholar 

  210. 210

    R. West, in “Comprehensive Organometallic Chemistry II”, 2nd ed, E. W. Abel, F. G. A. Stone, and G. Wilkinson, Ed., A. G. Davies, chapter Ed., Pergamon, Oxford, 1995, pp 77-110.

    Google Scholar 

  211. 211

    R. G. Jones and S. J. Holder, in “Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications”, 2nd ed, R. G. Jones, W. Ando, and J. Chojnowski, Ed., Kluwer Academic Publisher, Dordrecht, NL, 2000, chapt. 12.

    Google Scholar 

  212. 212

    J. Michl and R. West, in “Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications”, 2nd ed, R. G. Jones, W. Ando, and J. Chojnowski, Ed., Kluwer Academic Publisher, Dordrecht, NL, 2000, chapt. 18.

    Google Scholar 

  213. 213

    S. Yamaguchi and T. Tamao, in “Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications”, 2nd ed, R. G. Jones, W. Ando, and J. Chojnowski, Ed., Kluwer Academic Publisher, Dordrecht, NL, 2000, chapt. 17.

    Google Scholar 

  214. 214

    H. Suzuki, S. Hoshino, K. Furukawa, K. Ebata, C-H. Yuan, and I. Bleyl, Polym., Adv. Technol., 11, 460 (2000).

  215. 215

    F. S. Kipping, J. Chem. Soc., 119, 830 (1921).

  216. 216

    F. S. Kipping, J. Chem. Soc., 125, 2291 (1924).

  217. 217

    M. Fujino and H. Isaka, J. Chem. Soc., Chem. Commun. 466 (1989).

  218. 218

    M. Sisido, S. Egusa, A. Okamoto, and Y. Imanishi, J. Am. Chem. Soc., 105, 3351 (1983).

  219. 219

    J. P. Riehl and F. S. Richrdson, Chem. Rev., 86, 1 (1986).

  220. 220

    S. H. Chen, D. Katsis, A. W. Schmid, J. C. Mastrangelo, T. Tsutsui, and T. N. Blanton, Nature, 397, 506 (1999).

  221. 221

    H. P. J. M. Dekkers, in “Circular Dichroism: Principles and Applications”, 2nd ed, N. Berova, K. Nakanishi, and R. W. Woody, Ed., Wiley-VCH, New York, N.Y., 2000, chapt. 7.

    Google Scholar 

  222. 222

    N. Harada and K. Nakanishi, Ed., “Circular Dichroic Spectroscopy: Exciton Coupling in Organic Chemistry”, University Science Books, Oxford, 1983.

    Google Scholar 

  223. 223

    N. Berova and K. Nakanishi, in “Circular Dichroism: Principles and Applications”, 2nd ed, N. Berova, K. Nakanishi, and R. W. Woody, Ed., Wiley-VCH, New York, N.Y., 2000, chapt. 12.

    Google Scholar 

  224. 224

    R. Zink, T. F. Magnera, and J. Michl, J. Phys. Chem. A, 104, 3829 (2000).

  225. 225

    C.-H. Ottosson and J. Michl, J. Phys. Chem. A, 104, 3367 (2000).

  226. 226

    J. Michl and R. West, Acc. Chem. Res., 33, 821 (2000).

  227. 227

    J. Michl and R. West, in “Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications”, 2nd ed, R. G. Jones, W. Ando, and J. Chojnowski, Ed., Kluwer Academic Publisher, Dordrecht, NL, 2000, chapt. 18.

    Google Scholar 

  228. 228

    M. Fujiki, J. Am. Chem. Soc., 118, 7424 (1996).

  229. 229

    P. A. Lovell, “Comprehensive Polymer Science”, C. Booth and C. Price, eds, Pergamon, Oxford, 1989, Vol. 1, chapt. 9.

    Google Scholar 

  230. 230

    H. G. Hansma, J. Vesenka, C. Siegerist, G. Kelderman, H. Morrett, R. L. Sinsheimer, V. Elings, C. Bustamante, and P. K. Hansma, Science, 256, 1180 (1992).

  231. 231

    B. Samori, C. Nigro, A. Gordano, I. Muzzalupo, and C. Quagliariello, Angew. Chem. Int. Ed. Engl., 35, 529 (1996).

  232. 232

    J. Kumaki, Y. Nishikawa, and T. Hashimoto, J. Am. Chem. Soc., 118, 33213 (1996).

  233. 233

    U. B. Steiner, M. Rehahn, W. R. Caseri, and U. W. Suter, Macromolecules, 27, 1983 (1994).

  234. 234

    K. Shinohara, S. Yasuda, G. Kato, M. Fujita, and H. Shigekawa, J. Am. Chem. Soc., 123, 3619 (2001).

  235. 235

    K. Ebihara, S. Koshihara, M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, and M. Fujiki, Jpn. J. Appl. Phys., 36, L1211 (1997).

  236. 236

    K. Ebata, K. Furukawa, and N. Matsumoto, J. Am. Chem. Soc., 120, 7367 (1998).

  237. 237

    K. Ebata, K. Furukawa, N. Matsumoto, and M. Fujiki, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Sci.), 40(2), 157 (1999).

  238. 238

    K. Furukawa, K. Ebata, and M. Fujiki, Adv. Mater., 12, 1033 (2000).

  239. 239

    K. Furukawa and K. Ebata, Appl. Phys. Lett., 77, 4289 (2000).

  240. 240

    K. Mislow and P. Bickart, Isr. J. Chem., 15, 1 (1977).

  241. 241

    P. W. Fowler, Nature, 360, 626 (1992).

  242. 242

    Z. Zabrodsky, S. Peleg, and D. Avnir, J. Am. Chem. Soc., 115, 8278 (1993).

  243. 243

    H. Teramae and K. Takeda, J. Am. Chem. Soc., 111, 1281 (1989).

  244. 244

    F. M. Pohl and T. M. Jovin, J. Mol. Biol., 67, 375 (1972).

  245. 245

    F. M. Pohl, Nature, 260, 365 (1976).

  246. 246

    E. M. Bradbury, B. G. Carpenter, and H. Goldman, Biopolymers, 6, 837 (1968).

  247. 247

    H. Toriumi, N. Saso, Y. Yasumoto, S. Sasaki, and I. Uematsu, Polym. J., 11, 977 (1979).

  248. 248

    J. Watanabe, S. Okamoto, and A. Abe, Liq. Cryst., 15, 259 (1993).

  249. 249

    J. Watanabe, S. Okamoto, K. Satoh, K. Sakajiri, H. Furuya, and A. Abe, Macromolecules, 29, 7084 (1996).

  250. 250

    A. Abe, H. Furuya, and S. Okamoto, Biopolymers, 43, 405 (1997).

  251. 251

    K. Sakajiri, K. Satoh, S. Kawauchi, and J. Watanabe, J. Mol. Struct., 476, 1 (1999).

  252. 252

    Y. Okamoto, T. Nakano, E. Ono, and K. Hatada, Chem. Lett., 525 (1991).

  253. 253

    S. Mahadevan and M. Palaniandavar, Chem. Commun., 2547 (1996).

  254. 254

    Unpublished result.

  255. 255

    E. K. Wilson, Chem. Eng. News 6, 35 (2000).

  256. 256

    R. Feynman, Science, 254, 1300 (1991).

  257. 257

    K. E. Drexler, Ed., “Nanosystems: Molecular Machinery, Manufacturing and Computing”, JohnWiley & Sons, Inc., New York, N.Y., 1992.

    Google Scholar 

  258. 258

    B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, J. Am. Chem. Soc., 113, 5468 (1991).

  259. 259

    H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, and N. Nakashima, J. Am. Chem. Soc., 119, 7605 (1997).

  260. 260

    T. Yamaguchi, K. Uchida, and M. Irie, J. Am. Chem. Soc., 119, 6066 (1997).

  261. 261

    S. Zahn and J. W. Canary, Angew. Chem. Int. Ed., 37, 305 (1998).

  262. 262

    K. S. Burnham and G. B. Schuster, J. Am. Chem. Soc., 121, 10245 (1999).

  263. 263

    C. Mao, W. Sun, Z. Shen, and N. D. Seeman, Nature, 397, 144 (1999).

  264. 264

    N. Koumura, R. W. Zijistra, R. A. van Delden, N. Harada, and B. L. Feringa, Nature, 401, 152 (1999).

  265. 265

    T. R. Kelly, H. De Silva, and R. A. Silva, Nature, 397, 150 (1999).

  266. 266

    R. Schmieder, G. Hübner, C. Seel, and F. Vögtle, Angew. Chem. Int. Ed., 38, 3528 (1999).

  267. 267

    H. Engelkamp, R. Middelbeek, and R. J. M. Nolte, Science, 284, 785 (1999).

  268. 268

    S. Lloyd, Sci. Am., 273(4), 140 (1995).

  269. 269

    N. Gershenfeld and I. L. Chuang, Sci. Am., 278(6), 66 (1998).

  270. 270

    T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature, 395, 873 (1999).

  271. 271

    Y. Nakamura, Y.-A. Pashkin, and J. S. Tsai, Nature, 398, 786 (1999).

  272. 272

    J. A. Cina and R. A. Harris, J. Chem. Phys., 100, 2531 (1994).

  273. 273

    R. A. Harris, Chem. Phys. Lett., 223, 250 (1994).

  274. 274

    J. A. Cina and R. A. Harris, Science, 267, 832 (1995).

  275. 275

    R. A. Harris and L. Stodolsky, Phys. Lett., Sect. B, 78, 313 (1978).

  276. 276

    D. H. Rouvray, Sci. Am., 255(3), 36 (1986).

  277. 277

    F. Hund, Z. Physik, 43, 805 (1927).

  278. 278

    R. Janoschek, in “Chirality–From Weak Bosons to the α-Helix”, R. Janoschek, Ed., Springer-Verlag GmbH&Co., Berlin, 1991, chapt. 2.

    Google Scholar 

  279. 279

    J. Watanabe, Y. Fukuda, R. Gehani, and I. Uematsu, Macromolecules, 17, 1004 (1984).

  280. 280

    J. Watanabe, H. Ono, A. Abe, and I. Uematsu, Macromolecules, 18, 2141 (1985).

  281. 281

    H. Kosho, Y. Tanaka, S. Ichizuka, S. Kawauchi, and J. Watanabe, Polym. J., 31, 199 (1999).

  282. 282

    J. Watanabe, in “Ordering in Macromolecular Systems”, A. Teramoto, M. Kobayashi, and T. Norisue, Ed., Springer-Verlag GmbH&Co., Berlin, Heidelberg, 1994, pp 99–108.

    Google Scholar 

  283. 283

    K. Takeda, H. Teramae, and N. Matsumoto, J. Am. Chem. Soc., 108, 8186 (1986).

  284. 284

    L. A. Harrah and J. M. Zeigler, Macromolecules, 20, 601 (1987).

  285. 285

    M. Kakimoto, H. Ueno, H. Kojima, Y. Yamaguchi, and A. Nishimura, J. Polym. Sci., Part A: Polym. Chem., 34, 2753 (1996).

  286. 286

    T. J. Cleij, J. K. King, and L. W. Jenneskens, Macromolecules, 33, 89 (2000).

  287. 287

    H. Nakashima and M. Fujiki, Macromolecules, 34, 7558 (2001).

  288. 288

    R. West, J. Organomet. Chem., 300, 327 (1986).

  289. 289

    G. Yenca, Y. L. Chen, and K. Matyjaszewski, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Sci.), 28(2), 222 (1987).

  290. 290

    J. P. Banovetz, Y.-L. Hsiao, and R. M. Waymouth, J. Am. Chem. Soc., 115, 2540 (1993).

  291. 291

    Y.-L. Hsiao and R. M. Waymouth, J. Am. Chem. Soc., 116, 9779 (1994).

  292. 292

    U. Herzog and R. West, Macromolecules, 32, 2210 (1999).

  293. 293

    K. Matyjaszewski, Makromol. Chem., Macromol. Symp., 42/43, 269 (1991).

  294. 294

    J. R. Koe, D. R. Powell, S. Hayase, J. J. Buffy, and R. West, Angew. Chem., 37, 1441 (1998).

  295. 295

    Y. Okamoto, S. Honda, I. Okamoto, H. Yuki, S. Murata, R. Noyori, and H. Takaya, J. Am. Chem. Soc., 103, 6971 (1981).

  296. 296

    W. H. Pirkle and T. C. Pochapsky, Chem. Rev., 89, 347 (1989).

  297. 297

    G. Blaschke, J. Liq. Chromatogr., 9, 341 (1986).

  298. 298

    E. Yashima, E. Kasashima, and Y. Okamoto, Chirality, 9, 63 (1997).

  299. 299

    Y. Okamoto and E. Yashima, Angew. Chem. Int. Ed. Engl., 37, 1020 (1998).

  300. 300

    H. Motoyama, K. Takeda, and K. Shiraishi, Mat. Res. Soc. Symp. Proc., 486, 385 (1998).

  301. 301

    T. Endo, Y. Sugimoto, K. Takeda, and K. Shiraishi, Synth. Met., 98, 161 (1999).

  302. 302

    K. Takeda and K. Shiraishi, Solid State Commun., 85, 301 (1993).

  303. 303

    E. Fossum and K. Matyjaszewski, Macromolecules, 28, 1618 (1995).

  304. 304

    L. A. Harrah and J. M. Zeigler, Macromolecules, 20, 601 (1987).

  305. 305

    H. Nakashima and M. Fujiki, Macromolecules, 34, 7558 (2001).

  306. 306

    J.-M. Guenet, H. S. Jeon, C. Khatri, S. K. Jha, N. P. Balsara, M. M. Green, A. Brûlet, and A. Thierry, Macromolecules, 30, 4590 (1997).

  307. 307

    S. Yue, G. C. Berry, and M. M. Green, Macromolecules, 29, 6175 (1996).

  308. 308

    R. D. Miller and R. Sooriyakumaran, J. Polym. Sci., Polym. Lett. Ed., 25, 321 (1987).

  309. 309

    R. D. Miller and R. Sooriyakumaran, Macromolecules, 21, 3122 (1988).

  310. 310

    P. Cotts, R. D. Miller, and R. Sooriyakumaran, in “Silicon-Based Polymer Science”, J. M. Zeigler and F. W. G., Fearon, Ed., American Chemical Society, Washington D.C., 1990, chapt. 23, p 397.

    Google Scholar 

  311. 311

    J. Michl, Synth. Met., 49, 367 (1992).

  312. 312

    Y. E. Ovchinnikov, V. E. Shklover, Y. T. Struchkov, V. V. Dement’ev, T. M. Frunze, and B. A. Antipova, J. Organomet. Chem., 335, 157 (1987).

  313. 313

    Y. E. Ovchinnikov, V. V. Dement’ev, V. E. Shklover, Y. T. Struchkov, T. M. Frunze, B. A. Antipova, and V. A. Igonin, Makromol. Chem., 190, 3195 (1989).

  314. 314

    Unpublished work. Due to the noisiness of the CPPL signal, it was difficult to accurately ascertain the absolute intensity.

  315. 315

    J. J. L. M. Cornelissen, M. Fischer, N. A. J. M. Sommerdijk, and R. J. M. Nolte, Science, 280, 1427 (1998).

  316. 316

    S. J. Holder, R. C. Hiorns, N. A. J. M. Sommerdijk, S. J. Williams, R. G. Jones, and R. J. M. Nolte, Chem. Commun., 1443 (1998).

  317. 317

    N. A. J. M. Sommerdijk, S. J. Holder, R. C. Hiorns, R. G. Jones, and R. J. M. Nolte, Macromolecules, 33, 8289 (2000).

  318. 318

    H. Tachibana, H. Kishida, and Y. Tokura, Langmuir, 17, 437 (2001).

  319. 319

    H. Tachibana, H. Kishida, and Y. Tokura, Appl. Phys. Lett., 77, 2443 (2000).

  320. 320

    M. Yoshida, M. Mori, S. Yokokawa, F. Nakanishi, and H. Sakurai, Mol. Cryst. Liq. Cryst., A322, 135 (1998).

  321. 321

    M. Yoshida, Mol. Cryst. Liq. Cryst., A327, 71 (1999).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujiki, M., Koe, J., Terao, K. et al. Optically Active Polysilanes. Ten Years of Progress and New Polymer Twist for Nanoscience and Nanotechnology. Polym J 35, 297–344 (2003). https://doi.org/10.1295/polymj.35.297

Download citation

Keywords

  • Polysilane
  • Optically Active
  • Helix
  • Chiral
  • Circular Dichroism
  • Fluorescence
  • Conformation

Search