Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Photocontrolled chiral supramolecular assembly of azobenzene amphiphiles in aqueous media

Abstract

Supramolecular molecular amphiphiles that are photoresponsive have been intensively developed for a wide range of smart functional materials. As a photoswitch that displays high chemical and thermal stabilities, the azobenzene motif has been intensively incorporated into distinct soft materials to control properties and provide high temporal and high spatial resolution. However, only limited examples of molecular azobenzene amphiphiles (AAs) with chiral character have been reported with complicated synthetic manifold and photochemical studies. Herein, we design a novel molecular AA, AAPhe, with a simple molecular design and an L-amino acid motif. In addition to excellent photoresponsibility in organic media, AAPhe exhibits a high capacity for supramolecular transformation in aqueous media, as well as supramolecular chirality controlled by noninvasive photostimulation, as found in encouraging photochemical studies. Investigations of supramolecular behavior show that the supramolecular chiral structure induced by AAPhe assembles from microscopic to macroscopic length scales. The current design and studies of supramolecular assemblies of AAPhe provide us with fundamental concepts for constructing macroscopic functional materials with supramolecular chirality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nedeljković M, Sastre DE, Sundberg EJ. Bacterial flagellar filament: a supramolecular multifunctional nanostructure. Int J Mol Sci. 2021;22:7521. https://doi.org/10.3390/ijms22147521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luo Q, Dong Z, Hou C, Liu J. Protein-based supramolecular polymers: progress and prospect. Chem Commun. 2014;50:9997–10007. https://doi.org/10.1039/C4CC03143A.

    Article  CAS  Google Scholar 

  3. van Dun S, Ottmann C, Milroy LG, Brunsveld L. Supramolecular chemistry targeting proteins. J Am Chem Soc. 2017;139:13960–8. https://doi.org/10.1021/jacs.7b01979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–65. https://doi.org/10.1016/S0092-8674(03)00120-X.

    Article  CAS  PubMed  Google Scholar 

  5. O’Donnell AD, Salimi S, Hart LR, Babra TS, Greenland BW, Hayes W. Applications of supramolecular polymer networks. React Funct Polym. 2022;172:105209. https://doi.org/10.1016/j.reactfunctpolym.2022.105209.

    Article  CAS  Google Scholar 

  6. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7. https://doi.org/10.1126/science.1205962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular polymers in aqueous media. Chem Rev. 2016;116:2414–77. https://doi.org/10.1021/acs.chemrev.5b00369.

    Article  CAS  PubMed  Google Scholar 

  8. Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:16024. https://doi.org/10.1038/natrevmats.2016.24.

    Article  CAS  Google Scholar 

  9. Chen S, Costil R, Leung FKC, Feringa BL. Self‐assembly of photoresponsive molecular amphiphiles in aqueous media. Angew Chem Int Ed. 2021;60:11604–27. https://doi.org/10.1002/anie.202007693.

    Article  CAS  Google Scholar 

  10. Lubbe AS, van Leeuwen T, Wezenberg SJ, Feringa BL. Designing dynamic functional molecular systems. Tetrahedron. 2017;73:4837–48. https://doi.org/10.1016/j.tet.2017.06.049.

    Article  CAS  Google Scholar 

  11. Feringa BL. The art of building small: from molecular switches to motors (nobel lecture). Angew Chem Int Ed. 2017;56:11060–78. https://doi.org/10.1002/anie.201702979.

    Article  CAS  Google Scholar 

  12. Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev. 2021;50:12377–449. https://doi.org/10.1039/D0CS00547A.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing coupled motion with light: a key step toward machine-like function. Chem Rev. 2021;121:13213–37. https://doi.org/10.1021/acs.chemrev.1c00340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crespi S, Simeth NA, König B. Heteroaryl azo dyes as molecular photoswitches. Nat Rev Chem. 2019;3:133–46. https://doi.org/10.1038/s41570-019-0074-6.

    Article  CAS  Google Scholar 

  15. Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–25. https://doi.org/10.1039/C1CS15179G.

    Article  CAS  PubMed  Google Scholar 

  16. Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011;40:4422–37. https://doi.org/10.1039/c1cs15023e.

    Article  CAS  PubMed  Google Scholar 

  17. Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114:12174–277. https://doi.org/10.1021/cr500249p.

    Article  CAS  PubMed  Google Scholar 

  18. Villarón D, Wezenberg SJ. Stiff‐stilbene photoswitches: from fundamental studies to emergent applications. Angew Chem Int Ed. 2020;59:13192–202. https://doi.org/10.1002/anie.202001031.

    Article  CAS  Google Scholar 

  19. Baroncini M, Silvi S, Credi A. Photo- and redox-driven artificial molecular motors. Chem Rev. 2020;120:200–68. https://doi.org/10.1021/acs.chemrev.9b00291.

    Article  CAS  PubMed  Google Scholar 

  20. Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Artificial molecular motors. Chem Soc Rev. 2017;46:2592–621. https://doi.org/10.1039/C7CS00245A.

    Article  CAS  PubMed  Google Scholar 

  21. Poloni C, Stuart MCA, van der Meulen P, Szymanski W, Feringa BL. Light and heat control over secondary structure and amyloid-like fiber formation in an overcrowded-alkene-modified Trp zipper. Chem Sci. 2015;6:7311–8. https://doi.org/10.1039/C5SC02735G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu F, Pfeifer L, Stuart MCA, Leung FKC, Feringa BL. Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun. 2020;56:7451–4. https://doi.org/10.1039/d0cc02177f.

    Article  CAS  Google Scholar 

  23. Chen S, Leung FKC, Stuart MCA, Wang C, Feringa BL. Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J Am Chem Soc. 2020;142:10163–72. https://doi.org/10.1021/jacs.0c03153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Dijken DJ, Chen J, Stuart MCA, Hou L, Feringa BL. Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc. 2016;138:660–9. https://doi.org/10.1021/jacs.5b11318.

    Article  CAS  PubMed  Google Scholar 

  25. Leung FKC, van den Enk T, Kajitani T, Chen J, Stuart MCA, Kuipers J, et al. Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles. J Am Chem Soc. 2018;140:17724–33. https://doi.org/10.1021/jacs.8b10778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Yang L, Leung FKC, Kajitani T, Stuart MCA, Fukushima T, et al. Photoactuating artificial muscles of motor amphiphiles as an extracellular matrix mimetic scaffold for mesenchymal stem cells. J Am Chem Soc. 2022;144:3543–53. https://doi.org/10.1021/jacs.1c12318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lubbe AS, Böhmer C, Tosi F, Szymanski W, Feringa BL. Molecular motors in aqueous environment. J Org Chem. 2018;83:11008–18. https://doi.org/10.1021/acs.joc.8b01627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lerch MM, Szymański W, Feringa BL. The (photo)chemistry of stenhouse photoswitches: guiding principles and system design. Chem Soc Rev. 2018;47:1910–37. https://doi.org/10.1039/C7CS00772H.

    Article  CAS  PubMed  Google Scholar 

  29. Petermayer C, Dube H. Indigoid photoswitches: visible light responsive molecular tools. Acc Chem Res. 2018;51:1153–63. https://doi.org/10.1021/acs.accounts.7b00638.

    Article  CAS  PubMed  Google Scholar 

  30. Chau AKH, Cheung LH, Leung FKC. Red-light controlled supramolecular co-assembly transformations of stiff stilbene and donor acceptor stenhouse adduct amphiphiles. Dyes Pigm. 2022;208:110807. https://doi.org/10.1016/j.dyepig.2022.110807.

    Article  CAS  Google Scholar 

  31. Cheung LH, Kajitani T, Leung FKC. Visible-light controlled supramolecular transformations of donor-acceptor Stenhouse adducts amphiphiles at multiple length-scale. J Colloid Interface Sci. 2022;628:984–93. https://doi.org/10.1016/j.jcis.2022.08.034.

    Article  CAS  PubMed  Google Scholar 

  32. Kwan KSY, Lui YY, Kajitani T, Leung FKC. Aqueous supramolecular co-assembly of anionic and cationic photoresponsive stiff-stilbene amphiphiles. Macromol Rapid Commun. 2022;43:2200438. https://doi.org/10.1002/marc.202200438.

    Article  CAS  Google Scholar 

  33. Chau MH, Stuart MCA, Leung FKC. Red-light driven photoisomerisation and supramolecular transformation of indigo amphiphiles in aqueous media. Colloids Surf A Physicochem Eng Asp. 2023;661:130939. https://doi.org/10.1016/j.colsurfa.2023.130939.

    Article  CAS  Google Scholar 

  34. Goulet‐Hanssens A, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater. 2020;32:1905966. https://doi.org/10.1002/adma.201905966.

    Article  CAS  Google Scholar 

  35. Zhang Q, Qu DH, Tian H. Photo‐regulated supramolecular polymers: shining beyond disassembly and reassembly. Adv Opt Mater. 2019;7:1900033. https://doi.org/10.1002/adom.201900033.

    Article  CAS  Google Scholar 

  36. Zhang Q, Qu DH, Tian H, Feringa BL. Bottom-up: Can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials. Matter. 2020;3:355–70. https://doi.org/10.1016/j.matt.2020.05.014.

    Article  Google Scholar 

  37. Wang C, Wang S, Yang H, Xiang Y, Wang X, Bao C, et al. A light‐operated molecular cable car for gated ion transport. Angew Chem Int Ed. 2021;60:14836–40. https://doi.org/10.1002/anie.202102838.

    Article  CAS  Google Scholar 

  38. Xu TY, Tong F, Xu H, Wang MQ, Tian H, Qu DH. Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2] photocycloaddition. J Am Chem Soc. 2022;144:6278–90. https://doi.org/10.1021/jacs.1c12485.

    Article  CAS  PubMed  Google Scholar 

  39. Yang H, Yi J, Pang S, Ye K, Ye Z, Duan Q, et al. A light‐driven molecular machine controls K + channel transport and induces cancer cell apoptosis. Angew Chem Int Ed. 2022;61:e202204605. https://doi.org/10.1002/anie.202204605.

    Article  CAS  Google Scholar 

  40. Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem Soc Rev. 2011;40:3835–53. https://doi.org/10.1039/c0cs00183j.

    Article  CAS  PubMed  Google Scholar 

  41. Giles LW, Faul CFJ, Tabor RF. Azobenzene isomerization in condensed matter: lessons for the design of efficient light-responsive soft-matter systems. Mater Adv. 2021;2:4152–64. https://doi.org/10.1039/d1ma00340b.

    Article  CAS  Google Scholar 

  42. Jerca FA, Jerca VV, Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem. 2022;6:51–69. https://doi.org/10.1038/s41570-021-00334-w.

    Article  PubMed  Google Scholar 

  43. Cheng X, Miao T, Qian Y, Zhang Z, Zhang W, Zhu X. Supramolecular chirality in azobenzene-containing polymer system: Traditional postpolymerization self-assembly versus in situ supramolecular self-assembly strategy. Int J Mol Sci. 2020;21:6186. https://doi.org/10.3390/ijms21176186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang B, Feng Y, Feng W. Azobenzene-based solar thermal fuels: a review. Nano Micro Lett. 2022;14:138. https://doi.org/10.1007/s40820-022-00876-8.

    Article  CAS  Google Scholar 

  45. Chevalier A, Renard PY, Romieu A. Azo-based fluorogenic probes for biosensing and bioimaging: recent advances and upcoming challenges. Chem Asian J. 2017;12:2008–28. https://doi.org/10.1002/asia.201700682.

    Article  CAS  PubMed  Google Scholar 

  46. Yagai S, Karatsu T, Kitamura A. Photocontrollable self-assembly. Chem Eur J. 2005;11:4054–63. https://doi.org/10.1002/chem.200401323.

    Article  CAS  PubMed  Google Scholar 

  47. Shin JY, Abbott NL. Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir. 1999;15:4404–10. https://doi.org/10.1021/la981477f.

    Article  CAS  Google Scholar 

  48. Jiang J, Ma Y, Cui Z. Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp. 2017;513:287–91. https://doi.org/10.1016/j.colsurfa.2016.10.056.

    Article  CAS  Google Scholar 

  49. Chen S, Wang C, Yin Y, Chen K. Synthesis of photo-responsive azobenzene molecules with different hydrophobic chain length for controlling foam stability. RSC Adv. 2016;6:60138–44. https://doi.org/10.1039/c6ra06459k.

    Article  CAS  Google Scholar 

  50. Chen S, Zhang W, Wang C, Sun S. A recycled foam coloring approach based on the reversible photo-isomerization of an azobenzene cationic surfactant. Green Chem. 2016;18:3972–80. https://doi.org/10.1039/c6gc00711b.

    Article  CAS  Google Scholar 

  51. Chen S, Zhang Y, Chen K, Yin Y, Wang C. Insight into a fast-phototuning azobenzene switch for sustainably tailoring the foam stability. ACS Appl Mater Interfaces. 2017;9:13778–84. https://doi.org/10.1021/acsami.7b02024.

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Fei L, Ge F, Liu J, Yin Y, Wang C. A versatile and recycled pigment foam coloring approach for natural and synthetic fibers with nearly-zero pollutant discharge. J Clean Prod. 2020;243:118504. https://doi.org/10.1016/j.jclepro.2019.118504.

    Article  CAS  Google Scholar 

  53. Chen S, Fei L, Ge F, Wang C. Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems. Soft Matter. 2019;15:8313–9. https://doi.org/10.1039/c9sm01379b.

    Article  CAS  PubMed  Google Scholar 

  54. Li L, Jiang H, Messmore BW, Bull SR, Stupp SI. A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed. 2007;46:5873–6. https://doi.org/10.1002/anie.200701328.

    Article  CAS  Google Scholar 

  55. Fuentes E, Gerth M, Berrocal JA, Matera C, Gorostiza P, Voets IK, et al. An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc. 2020;142:10069–78. https://doi.org/10.1021/jacs.0c02067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fuentes E, Gabaldón Y, Collado M, Dhiman S, Berrocal JA, Pujals S, et al. Supramolecular stability of benzene-1,3,5-tricarboxamide supramolecular polymers in biological media: beyond the stability-responsiveness trade-off. J Am Chem Soc. 2022;144:21196–205. https://doi.org/10.1021/jacs.2c08528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen J, Leung FKC, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132–8. https://doi.org/10.1038/nchem.2887.

    Article  CAS  PubMed  Google Scholar 

  58. Leung FKC, Kajitani T, Stuart MCA, Fukushima T, Feringa BL. Dual‐controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles. Angew Chem Int Ed. 2019;58:10985–9. https://doi.org/10.1002/anie.201905445.

    Article  CAS  Google Scholar 

  59. Chen R, Gu H, Qiu F, Zhou Q, Li R, Ye Y, et al. A dual-responsive supramolecular amphiphile based on cucurbit[7]uril/butyrylcholine host–guest molecular recognition. Tetrahedron. 2016;72:5290–4. https://doi.org/10.1016/j.tet.2016.05.022.

    Article  CAS  Google Scholar 

  60. Tantakitti F, Boekhoven J, Wang X, Kazantsev RV, Yu T, Li J, et al. Energy landscapes and functions of supramolecular systems. Nat Mater. 2016;15:469–76. https://doi.org/10.1038/nmat4538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stuart MCA, van de Pas JC, Engberts JBFN. The use of nile red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J Phys Org Chem. 2005;18:929–34. https://doi.org/10.1002/poc.919.

    Article  CAS  Google Scholar 

  62. Zhang S, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, et al. A self-assembly pathway to aligned monodomain gels. Nat Mater. 2010;9:594–601. https://doi.org/10.1038/nmat2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Croucher Foundation (Croucher Innovation Award-2021), The Hong Kong Polytechnic University (W08A, ZVST), and the Hong Kong Special Administrative Region Government (InnoHK). We acknowledge the technical support from UCEA and ULS of PolyU.

Author information

Authors and Affiliations

Authors

Contributions

BBL performed all the synthesis and part of the characterization experiments for AAPhe. L-HC performed all characterizations of AAPhe in aqueous media, including TEM and SEM studies. FK-CL cowrote the paper and conceived and supervised the research. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Franco King-Chi Leung.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, LH., Liu, B.B. & Leung, F.KC. Photocontrolled chiral supramolecular assembly of azobenzene amphiphiles in aqueous media. Polym J 55, 1189–1198 (2023). https://doi.org/10.1038/s41428-023-00792-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00792-7

Search

Quick links