Radical Polymerization of Methyl Methacrylate by Captodative Substituted Morpholino Succinonitrile


Radical polymerization of methyl methacrylate (MMA) by captodatively substituted morpholino succinonitrile was studied kinetically at 90 and 130°C by comparison with that of styrene. The polymerizations of MMA and styrene at 90°C proceeded at moderate rates to give polymers which show unimodal size exclusion chromatography (SEC) curves. Both polymerizations at 130°C were significantly fast to give polymers with bimodal SEC curve. A higher molecular weight fraction of the obtained polymer may mostly formed by a spontaneous thermal polymerization in styrene polymerization, but in MMA polymerization produced mainly by dissociation of the domant species. The rate constant of the activation of captodative-capped poly(MMA) domant was smaller than that reported for nitroxide-mediated styrene polymerization.


  1. 1

    D. H. Solomon, E. Rizzardo, and P. Calioli, Eur. Pat. Appl. 135280 1985:

  2. 2

    Chem. Abstr., 102, 221335q (1985).

  3. 3

    M. K. Georges, R. P. N. Vergin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, 26, 2987 (1993).

  4. 4

    J.-S. Wang and K. Matyjaszewski, Macromolecules, 28, 7901 (1995).

  5. 5

    J. Chiefari, Y. K. B. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T.A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 31. 5559 (1998).

  6. 6

    T. Otsu and M. Yoshida, Makromol. Chem. Rapid Commun., 3, 127 (1982).

  7. 7

    M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Macromolecules, 28, 1721 (1995).

  8. 8

    T. S, Kwon, S. Kumazawa, T. Yokoi, S. Kondo, H. Kunisada, and Y. Yuki, J. Macromol. Sci., Pure Appl. Chem., A34, 1553 (1997).

  9. 9

    T. Otsu, T. Matsunaga, A. Kuriyama, and M. Yoshioka, Eur. Polym. J., 25, 643 (1989).

  10. 10

    H. Tanaka, I. Sakai, and T. Ota, J. Am. Chem. Soc., 108, 2208 (1986).

  11. 11

    H. Tanaka, Y. Yasuda, and T. Ota, J. Chem. Soc., Chem. Commun., 109 (1986).

  12. 12

    H. Tanaka, Trends Polym. Sci., 1, 361 (1993).

  13. 13

    4, 106 (1996).

  14. 14

    H. Tanaka, Y. Teraoka, T. Sato, and T. Ota, Makromol. Chem., 194, 2719 (1987).

  15. 15

    H. Tanaka, T. Kameshima, and T. Hongo, J. Polym. Sci., Part A: Polym. Chem., 34, 1945 (1996).

  16. 16

    J. Penelle, A. B. Padias, H. K. Hall, Jr., and H. Tanaka, Adv. Polym. Sci., 102, 73 (1992).

  17. 17

    S. C. Temin, J. Org. Chem., 22, 1714 (1957).

  18. 18

    Two crystallographically independent molecules exist in a unit cell lying on the inversion center of the crystal. Crystal data: C22H38O4N4, F.W.=422.57, primitive triclinic, P1̅(#2), a=10.437(1) Å, b=19.451(3) Å, c=6.531(1) Å, α=91.52(1)°, β=105.42(1)°, γ=101.77(1)°, V=1246.8(3) Å3, Z=2, Dcalcd=1.126g cm-3, F00 0=460.00, μ(Cu-Kα)=6.28cm -1.

  19. 19

    D. Braun, T. Skrzek, S. S. BeiBer, and H. Tretner, Makromol. Chem. Phys., 196, 573 (1995).

  20. 20

    L. Stella, Z. Janousek, R. Merenyi, and H. G. Viehe, Angew. Chem. Int. Ed. Engl., 17, 691 (1978).

  21. 21

    H. Tanaka, Prog. Polym. Sci., 17, 1107 (1992).

  22. 22

    It is difficult to determine precisely the value of [4]t because of very small variation in domant concentration during polymerization and large scatter of experimental points as seen in curve (b) in Figure 5. It was thus estimated based on the number of HM polymer chains produced, termination mode, and the assumption that 3 and 5 give HM polymer with 100% reinitiation efficiency and a bimolecular termination of reinitiated poly (MMA) radicals. [4]t was calculated to be 4.22×10-3mol L-1 at t=35min on the basis of the number of HM polymer chains generated (4.1% increase based on the original LM polymer chains) and 12% recombination termination at 130°C (calculated from the reference22).

  23. 23

    It is not easy to determine precisely the content of end-capped morpholino fragments from 1H NMR spectra of domant poly(MMA) at present because of very small content of cd fragment in polymer and overlapping of 1H NMR absorption of the morpholino units with very strong sbsorption of methoxy protons of poly(MMA) in the region of 2.5-4.0ppm although some absorptions probably due to morpholino units appeared around 2.7—3.0 and 3.6ppm in 1H NMR of domant poly(MMA-d8). Thus, [4]0 was estimated from polymer yield (19%) and molecular weight ( n=4.14×104).

  24. 24

    Calculated from (kt/kp2)=4.65×10-3exp (6390/RT), where R and T are the gas constant and absolute temperature, respectively: A. V. Tobolsky, J. Polym. Sci., 16, 311 (1955).

  25. 25

    C. Plessis, G. Arzamendi, J. R. Leiza, H. A.S. Schoonbrood, D. Charmot, and J. M. Asua, Macromolecules, 33, 4 (2000).

  26. 26

    Side reaction of the unsaturated end group produced by high disproportionation termination of polymers at high temperature such as 130°C: G. Henrici-Olive and S. Olive, Makromol. Chem., 31, 88 (1959).

  27. 27

    D. Greszta and K. Matyjaszewski, Macromolecules, 29, 7661 (1996).

  28. 28

    D. Braun, H. J. Lindner, and H. Tretner, Eur. Polym. J., 25, 725 (1989).

  29. 29

    G. Moad and D. H. Solomon, “The Chemistry of Free Radical Polymerization”, 1st ed, Pergamon, Oxford, 1995.

    Google Scholar 

  30. 30

    A. Goto, T. Terauchi, T. Fukuda, and T. Miyamoto, Macromol. Rapid Commun., 18, 673 (1997).

  31. 31

    K. Ohno, A. Goto, T. Fukuda, J. Xia, and K. Matyjaszewski, Macromolecules, 31, 2699 (1998).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, H., Tezuka, Y. & Fujita, Ki. Radical Polymerization of Methyl Methacrylate by Captodative Substituted Morpholino Succinonitrile. Polym J 32, 711–715 (2000). https://doi.org/10.1295/polymj.32.711

Download citation


  • Radical Polymerization
  • Captodative Substitution
  • Radical Initiator
  • Bimodal Size Exclusion Chromatography Curve
  • Morpholino Succinonitrile
  • Methyl Methacrylate

Further reading


Quick links