Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of adding lithium chloride on the radical copolymerization of lithium p-styrenesulfonate and acrylamide

Abstract

Lithium p-styrenesulfonate (LiSS) is a water-soluble monomer that exhibits good solubility compared with sodium p-styrenesulfonate (NaSS). Radical copolymerization of LiSS was investigated using acrylamide (AAm) as the comonomer in water at 60 °C in the presence of various salts as additives. The copolymerization of LiSS and AAm as highly reactive and less reactive monomers, respectively, provided a random copolymer consisting of a large amount of LiSS repeating unit at an earlier stage in the reaction. Then, the homopolymerizations of AAm spontaneously proceeded after LiSS was consumed at a high conversion (over 99%). A large amount of lithium chloride was added to the copolymerization system, promoting the polymerization reactivity of LiSS. The addition of lithium bromide and sodium bromide suppressed the copolymerization of LiSS and AAm and completely prevented the spontaneous homopolymerization of AAm after copolymerization. The effects of other additives on the copolymerization systems were investigated, and the combination of sodium nitrite and ascorbic acid was revealed to inhibit the copolymerization of LiSS and AAm. The interactions between lithium cations and functional groups in the monomers and polymers that benefit the copolymerization reactivity is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tian Q, Yu X, Zhang L, Yu D. Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue. J Col Inter Sci. 2017;491:294–304.

    CAS  Google Scholar 

  2. Salunkhe B, Schuman TP. Super-adsorbent hydrogels for removal of methylene blue from aqueous solution: Dye adsorption isotherms, kinetics, and thermodynamic properties. Macromol. 2021;1:56–275.

    Google Scholar 

  3. Xing L, Guo N, Zhang Y, Zhang H, Liu J. A negatively charged loose nanofiltration membrane by blending with poly(sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification. Sep Purif Technol. 2015;146:50–59.

    CAS  Google Scholar 

  4. Deboli F, Bruggen B, van der, Donten ML. A novel concept of hierarchical cation exchange membrane fabricated from commodity precursors through an easily scalable process. J Mem Sci 2021;636:119594.

    CAS  Google Scholar 

  5. Gadim TDO, Figueiredo AGPR, Rosero-Navarro NC, Vilela C, Gamelas JAF, Barros-Timmons A, et al. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl Mater Inter. 2014;6:7864–75.

    CAS  Google Scholar 

  6. Yamazaki M, Akiyama E, Ozoe S. Synthesis of poly(styrenesulfonate)-poly(dialkylacrylamide) block copolymers and preparation of conductive PEDOT composites. Kobunshi Ronbunshu. 2017;74:524–33.

    CAS  Google Scholar 

  7. Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater. 2019;31:1806133.

    Google Scholar 

  8. Li S-S, Xie Y, Xiang T, Ma L, He C, Sun S-D, et al. Heparin-mimicking polyethersulfone membranes: Hemocompatibility, cytocompatibility, antifouling and antibacterial properties. J Mem Sci. 2016;498:135–46.

    CAS  Google Scholar 

  9. Amokrane G, Humblot V, Jubeli E, Yagoubi N, Ramtani S, Migonney V, et al. Electrospun poly(ε-caprolactone) fiber scaffolds functionalized by the covalent grafting of a bioactive polymer: Surface characterization and influence on in vitro biological response. ACS Omega. 2019;4:17194–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo F, Sun TL, Nakajima T, Kurokawa T, Zhao Y, Ihsan AB, et al. Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel. Macromolecules. 2014;47:6037–46.

    CAS  Google Scholar 

  11. He X, Zhang C, Wang M, Zhang Y, Liu L, Yang W. An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties. ACS Appl Mater Inter. 2017;9:11134–43.

    CAS  Google Scholar 

  12. Rahman A, Solaiman, Foyez T, Susan ABHM, Imran AB. Self-healable and conductive double-network hydrogels with bioactive properties. Macromol Chem Phys. 2020;221:2000207.

    CAS  Google Scholar 

  13. Lu F, Li G, Yu Y, Gao X, Zheng L, Chen Z. Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chem Eng J. 2020;384:123237.

    CAS  Google Scholar 

  14. Li Z, Liu F, Chen S, Zhai F, Li Y, Feng Y, et al. Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries. Nano Ener. 2021;82:105698.

    CAS  Google Scholar 

  15. Gao X, Guo C, Ma Z, Xi G, Meng Y, Li Y. Boosting Li-S battery performance using an in-cell electropolymerized conductive polymer. Mater Adv. 2021;2:974–84.

    CAS  Google Scholar 

  16. Bilgin S, Tomovska R, Asua JM. Effect of ionic monomer concentration on latex and film properties for surfactant-free high solids content polymer dispersions. Eur Polym J. 2017;93:480–94.

    CAS  Google Scholar 

  17. Bilgin S, Tomovska R, Asua JM. Surfactant-free high solids content polymer dispersions. Polymer. 2017;117:64–75.

    CAS  Google Scholar 

  18. Sharker KK, Ohara Y, Shigeta Y, Ozoe S, Yusa S. Upper critical solution temperature (UCST) behavior of polystyrene-based polyampholytes in aqueous solution. Polym (Basel). 2019;11:265.

    Google Scholar 

  19. Sharker KK, Shigeta Y, Ozoe S, Yusa S. Amphoteric statistical copolymers with well-controlled structure and upper critical solution temperature in aqueous solutions. Chem Lett. 2020;49:1443–6.

    CAS  Google Scholar 

  20. Sharker KK, Shigeta Y, Ozoe S, Damsongsang P, Hoven VP, Yusa S. Upper critical solution temperature behavior of pH-responsive amphoteric statistical copolymers in aqueous solutions. ACS Omega. 2021;6:9153–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang H, Fliedel C, Manoury E, Poli R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. Polymer. 2022;243:124640.

    CAS  Google Scholar 

  22. Buback M, Hutchinson RA, Lacík I. Radical polymerization kinetics of water-soluble monomers. Prog Polym Sci. 2023;138:101645.

    CAS  Google Scholar 

  23. Martinez-Ibanez M, Sanchez-Diez E, Qiao L, Meabe L, Santiago A, Zhu H, et al. Weakly coordinating fluorine-free polysalt for single lithium-ion conductive solid polymer electrolytes. Bat Super. 2020;3:738–46.

    CAS  Google Scholar 

  24. Mengistie TS, Ko JM, Kim JY. Enhanced single-ion conduction and free-standing properties of solid polymer electrolyte by incorporating a polyelectrolyte. Mater Res Exp. 2021;8:035308.

    CAS  Google Scholar 

  25. Diederichsen KM, McShane EJ, McCloskey BD. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017;2:2563–75.

    CAS  Google Scholar 

  26. Koda T, Dohi S, Tachi H, Suzuki Y, Kojima C, Matsumoto A. One-shot preparation of polyacrylamide/poly(sodium styrenesulfonate) double network hydrogels for rapid optical tissue clearing. ACS Omega. 2019;4:21083–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dohi S, Suzuki Y, Matsumoto A. One-shot radical polymerization of vinyl monomers with different reactivity accompanying spontaneous delay of polymerization for the synthesis of double-network hydrogels. Polym Int. 2020;69:954–63.

    CAS  Google Scholar 

  28. Uesaka H, Suzuki Y, Ozoe S, Shigeta Y, Matsumoto A Radical copolymerization of lithium p-styrenesulfonate followed by homopolymerization of a less-reactive comonomer with spontaneous delay. To be published.

  29. Ajiro H, Watanabe J, Akashi M. Diversification of nonionic amphiphilic poly(N-vinylacetamide) hydrogels by a double network approach. Chem Lett. 2007;36:1134–5.

    CAS  Google Scholar 

  30. Aranaz I, Martínez-Campos E, Nash ME, Tardajos MG, Reinecke H, Elvira C, et al. Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J Mater Chem B. 2014;2:3839–48.

    CAS  PubMed  Google Scholar 

  31. Fineman M, Ross SD. Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci. 1950;5:259–62.

    CAS  Google Scholar 

  32. Kelen T, Tüdõs FJ. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. J Macromol Sci Chem. 1975;A9:1–27.

    CAS  Google Scholar 

  33. Schneider M, Graillat C, Boutti S, McKenna TF. Decomposition of APS and H2O2 for emulsion polymerization. Polym Bull. 2001;47:269–75.

    CAS  Google Scholar 

  34. Borisov IM, Luksha RS, Rashidova ST. Kinetic features of ammonium persulfate decomposition in aqueous medium. Rus Chem Bull. 2015;64:2512–3.

    CAS  Google Scholar 

  35. Hirose H, Iwamoto Y, Norisuye T. Chain stiffness and excluded-volume effects in sodium poly(styrenesulfonate) solutions at high ionic strength. Macromolecules. 1999;32:8629–34.

    CAS  Google Scholar 

  36. Hirano T, Saito T, Kurano Y, Miwa Y, Oshimura M, Ute K. Dual role for alkali metal cations in enhancing the low-temperature radical polymerization of N,N-dimethylacrylamide. Polym Chem. 2015;6:2054–64.

    CAS  Google Scholar 

  37. Hirano T, Segata T, Hashimoto J, Miwa Y, Oshimura M, Ute K. Syndiotactic- and heterotactic-specific radical polymerization of N-n-propylmethacrylamide complexed with alkali metal ions. Polym Chem. 2015;6:4927–39.

    CAS  Google Scholar 

  38. Hirano T, Ogasa Y, Oshimura M, Ute K. Chemoselective radical polymerization of N-allylmethacrylamide with an aid of complexation with Li+ cation. Polymer 2020;201:122664.

    CAS  Google Scholar 

  39. Merna J, Vlček P, Volkis V, Michl J. Li+ catalysis and other new methodologies for the radical polymerization of less activated olefins. Chem Rev. 2016;116:771–85.

    CAS  PubMed  Google Scholar 

  40. Yamada S. Cation-π interactions in organic synthesis. Chem Rev. 2018;118:11353–432.

    CAS  PubMed  Google Scholar 

  41. Sugihara S, Kawamoto Y, Maeda Y. Direct radical polymerization of vinyl ethers: Reversible addition−fragmentation chain transfer polymerization of hydroxy-functional vinyl ethers. Macromolecules. 2016;49:1563–74.

    CAS  Google Scholar 

  42. Sugihara S, Yoshida A, Kono T, Takayama T, Maeda Y. Controlled radical homopolymerization of representative cationically polymerizable vinyl ethers. J Am Chem Soc. 2019;141:13954–61.

    CAS  PubMed  Google Scholar 

  43. Gromov VF, Osmanov TO, Khomikovskii PM, Abkin AD. Polymerization of acrylamide in various solvents in the presence of Lewis acids. Eur Polym J. 1980;16:803–8.

    CAS  Google Scholar 

  44. Matsuda T, Sugawara T. Synthesis of multifunctional, nonionic vinyl polymers and their 13C spin-lattice relaxation times in deuterium oxide solutions. Macromolecules 1996;29:5375–83.

    CAS  Google Scholar 

  45. Hildebrand V, Laschewsky A, Paech M, Mueller-Buschbaum P, Papadakis CM. Effect of the zwitterion structure on the thermo-responsive behavior of poly(sulfobetaine methacrylates). Polym Chem. 2017;8:310–22.

    CAS  Google Scholar 

  46. Tang W, Kwak Y, Braunecker W, Tsarevsky NV, Coote ML, Matyjaszewski K. Understanding atom transfer radical polymerization: Effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc. 2008;130:10702–13.

    CAS  PubMed  Google Scholar 

  47. Uegaki H, Kamigaito M, Sawamoto M. Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3)4. J Polym Sci Part A Polym Chem. 1999;37:3003–9.

    CAS  Google Scholar 

  48. Luo R, Sen A. Electron-transfer-induced iron-based atom transfer radical polymerization of styrene derivatives and copolymerization of styrene and methyl methacrylate. Macromolecules. 2008;41:4514–8.

    CAS  Google Scholar 

  49. Xu X-Y, Zeng G-M, Peng Y-R, Zeng Z. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. Chem Eng J. 2012;200/202:25–31.

    Google Scholar 

  50. Saito T, Isogai A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules. 2004;5:1983–9.

    CAS  PubMed  Google Scholar 

  51. Narain H, jagadale SM, Ghatge ND. Studies od redox polymerization 1. Aqueous polymerization of acrylamide by an ascorbic acid-peroxydisulfate system. J Polym Sci Polym Chem Ed. 1981;19:1225–38.

    CAS  Google Scholar 

  52. Simakova A, Averick SE, Konkolewicz D, Matyjaszewski K, Aqueous, ARGET ATRP. Macromolecules. 2012;45:6371–9.

    CAS  Google Scholar 

  53. Shanmugam S, Xu J, Boyer C. Aqueous RAFT photopolymerization with oxygen tolerance. Macromolecules. 2016;49:9345–57.

    CAS  Google Scholar 

  54. Ng G, Yeow J, Xu J, Boyer C. Application of oxygen tolerant PET-RAFT to polymerization-induced self-assembly. Polym Chem. 2017;8:2841–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akikazu Matsumoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uesaka, H., Suzuki, Y., Ozoe, S. et al. Effect of adding lithium chloride on the radical copolymerization of lithium p-styrenesulfonate and acrylamide. Polym J 55, 1057–1066 (2023). https://doi.org/10.1038/s41428-023-00802-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00802-8

Search

Quick links