Effect of Rubber Content in Acrylonitrile–Butadiene–Styrene and Additional Rubber on The Polymer Blends of Polycarbonate and Acrylonitrile–Butadiene–Styrene

Abstract

Higher ABS rubber content in the polycarbonate (PC)/acrynitrile–butadiene–styrene (ABS) blend resulted in toughness improvement in terms of tensile, Izod impact and strain energy release rate at a cost of higher melt viscosity. The extra-added core-shell rubber particles with poly(methyl methacrylate) (PMMA) or acrylonitrile–styrene (SAN) outer shell resided mainly in the ABS phase and further improved the resulted blends toughness. The addition of styrene–maleic anhydride (SMA) copolymer in the PC/ABS blends caused severe coagulation of the rubber particles in the ABS phase and left a greater fraction of the SAN phase without presence of rubber. The toughness improvement by increasing rubber content must be compensated by the increase of melt viscosity and this fact has to be taken into consideration in selecting the starting materials of the PC/ABS blends.

References

  1. 1

    T. S. Grabowski (to Borg-Warner Corp.), U.S. Patent 3,130,177 (1964).

  2. 2

    H. Keskkula and A. A. Pettis (to Dow Chemical Co.), U.S. Patent 3,239,582 (1966).

  3. 3

    S. Furukawa, Y. Sonoyama, and A. Ohi (to Daicell Co., Ltd.), Japan Kokai 73 43,750 (1973).

  4. 4

    H. Sakano, M. Kodama, A. Ito, and M. Terada (to Sumitomo Naugatuck Co. Ltd.), U.S. Patent 4,299,929 (1981).

  5. 5

    E. Yonemitsu, S. Kamiyama, T. Kaneda, and M. Miura (to Mitsubishi Gas Chemical Co.), Japan Kokai 75 85,651 (1975).

  6. 6

    D. E. Henton (to Dow Chemical Co.), U.S. Patent 4,367,310 (1983).

  7. 7

    D. E. Henton (to Dow Chemical Co.), U.S. Patent 4,218,544 (1980).

  8. 8

    D. Margotte, H. Peters, and J. Buekers (to Bayer A.G.), Ger. Offen. 3,002,662 (1981).

  9. 9

    P. Y. Liu (to General Electric), U.S. Patent 4,263,415 (1981).

  10. 10

    P. Y. Liu (to General Electric), U.S. Patent 4,390,657 (1983).

  11. 11

    P. Y. Liu and N. R. Rosenquint (to General Electric), U.S. Patent 4,456,725 (1984).

  12. 12

    U. R. Grogo, N. R. Lazear, and M. W. Witman (to Mobay Chemical Co.), U.S. Patent 4,472,554 (1984).

  13. 13

    K. C. Rusch and R. H. Beck, J. Polym. Sci., C, No. 30, 447 (1970).

  14. 14

    D. Stefan and H. L. Williams, J. Appl. Polym. Sci., 18, 1451 (1974).

  15. 15

    J. I. Equiazabal and J. Nazabal, Polym. Eng. Sci., 30, 527 (1990).

  16. 16

    S. L. Cohen and N. R. Lazear, Plastics Engineering, 23, August (1982).

  17. 17

    M. T. Shaw, Polym. Eng. Sci., 22, 115 (1982).

  18. 18

    T. Kurauchi and T. Ohta, J. Mater. Sci., 19, 1699 (1984).

  19. 19

    H. Suarez, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 29, 3253 (1984).

  20. 20

    D. Keitz, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 29, 3131 (1984).

  21. 21

    K. Koo, T. Inoue, and K. Miyasaka, Polym. Eng. Sci., 25, 741 (1985).

  22. 22

    G. Weber and J. Schocps, Angew Makromol. Chem., 136, 45 (1985).

  23. 23

    R. E. Skochdopolc, C. R. Finch, and J. Marshall, Polym. Eng. Sci., 27, 627 (1987).

  24. 24

    W. Y. Chiang and D. S. Hwung, Polym. Eng. Sci., 27, 632 (1987).

  25. 25

    W. K. Chin and J. L. Hwung, “Advances in Polymer Blends and Alloys Technology,” Vol. 1, M. A. Kohudic, Ed., Technomic Publishing Co. Inc., Lancaster 1988, p. 154.

  26. 26

    W. N. Kim and C. M. Burns, Polym. Eng. Sci., 28, 1115 (1988).

  27. 27

    K. W. Mclaughlin, Polym. Eng. Sci., 29, 1560 (1989).

  28. 28

    D. Quintens, G. Groeninckx, M. Guest, and L. Aerts, Polym. Eng. Sci., 30, 1474 (1990).

  29. 29

    J. J. Herpels and L. Mascia, Eur. Polym. J., 26, 997 (1990).

  30. 30

    M. Ishikawa and I. Chiba, Polymer, 31, 1232 (1990).

  31. 31

    T. W. Cheng, H. Keskkula, and D. R. Paul, Polymer, 33, 1606 (1992).

  32. 32

    J. S. Wu, S. C. Shen, and F. C. Chang, J. Appl. Polym. Sci., 50, 1379 (1993).

  33. 33

    F. C. Chang, Company internal report, Dow Chemical Company (1985).

  34. 34

    S. Y. Hobbs, M. E. J. Dekkers, and V. H. Watkins, Polym. Bull., 17, 341 (1987).

  35. 35

    S. Y. Hobbs, M. E. J. Dekkers, and V. H. Watkins, J. Mater. Sci., 23, 1219 (1988).

  36. 36

    R. C. Chen and F. C. Chang, Polym. Networks and Blends, 3, 107 (1993).

  37. 37

    F. C. Chang, M. Y. Yang, and J. S. Wu, Polymer, 32, 1394 (1991).

  38. 38

    H. Keskkula, D. R. Paul, K. M. McCreedy, and D. E. Henton, Polymer, 28, 2063 (1987).

  39. 39

    K. P. Lin and F. C. Chang, Polym. Networks and Blends, to appear.

  40. 40

    T. C. Chou and F. C. Chang, Proceedings of the 1993 Annual Conference of the Chinese Society for Material Science, Hsinchu, Taiwan, 1993, pp. 3–39.

  41. 41

    F. C. Chang and M. Y. Yang, Polym. Eng. Sci., 30, 543 (1990).

  42. 42

    F. C. Chang, J. S. Wu, and L. H. Chu, J. Appl. Polym. Sci., 44, 491 (1992).

  43. 43

    F. C. Chang and Y. C. Hwu, Polym. Eng. Sci., 31, 1509 (1991).

  44. 44

    H. J. Karam and J. C. Bellinger, Ind. Eng. Chem. Fund., 7, 576 (1968).

  45. 45

    S. Wu, Polym. Eng. Sci., 27, 335 (1987).

  46. 46

    F. C. Chang and H. C. Hsu, J. Appl. Polym. Sci., 47, 2195 (1993).

  47. 47

    H. R. Brown, J. Mater. Sci., 8, 941 (1973).

  48. 48

    G. P. Maeshall, J. G. Williams, and E. E. Turner, J. Mater. Sci., 8, 949 (1973).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Polymer Blend
  • Polycarbonate
  • Acrylonitrile–Butadiene–Styrene
  • Rubber Distribution
  • Toughness

Further reading