Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carbon black/silica hybrid filler networking and its synergistic effects on the performance of styrene-butadiene rubber composites

Abstract

This study shows how carbon black/silica hybrid filler networking leads to synergistic properties in styrene-butadiene rubber (SBR) composites. The effects of low concentrations of silica, the secondary filler, on flocculation and network formation/breakdown (Payne effect) of carbon black, the primary filler in the SBR composites, were evaluated. There was a critical silica concentration at which this synergy was observed, but it disappeared at higher concentrations due to network formation by silica itself. A mismatch between the carbon black and silica surface energies was shown to be the determining parameter. Critical loading of silica was also observed for vulcanization of rubber composites, at which the enthalpy of vulcanization increased considerably. Enhancements in the final properties, such as mechanical strength and wear resistance, were explained by improvements in the dispersion of carbon black and vulcanization of rubber at the critical loading of silica.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Natarajan B, Li Y, Deng H, Brinson LC, Schadler LS. Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules. 2013;46:2833–41.

    Article  CAS  Google Scholar 

  2. Stockelhuber K, Svistkov A, Pelevin A, Heinrich G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules. 2011;44:4366–81.

    Article  Google Scholar 

  3. Leblanc JL. Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci. 2002;27:627–87.

    Article  CAS  Google Scholar 

  4. Choi S-S, Ko E. Novel test method to estimate bound rubber formation of silica-filled solution styrene-]][butadiene rubber compounds. Polym Test. 2014;40:170–7.

    Article  CAS  Google Scholar 

  5. Stöckelhuber K, Wießner S, Das A, Heinrich G. Filler flocculation in polymers–a simplified model derived from thermodynamics and game theory. Soft Matter. 2017;13:3701–9.

    Article  Google Scholar 

  6. Fritzsche J, Klüppel M. Structural dynamics and interfacial properties of filler-reinforced elastomers. J Phys: Condens Matter. 2010;23:035104.

    Google Scholar 

  7. Mujtaba A, Keller M, Ilisch S, Radusch H-J, Beiner M, Thurn-Albrecht T, et al. Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber–silica nanocomposites. ACS Macro Lett. 2014;3:481–5.

    Article  CAS  Google Scholar 

  8. Bohm G, Tomaszewski W, Cole W, Hogan T. Furthering the understanding of the non linear response of filler reinforced elastomers. Polymer. 2010;51:2057–68.

    Article  CAS  Google Scholar 

  9. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. The effect of interfacial dynamics on the bulk mechanical properties of rubber composites. Polym J. 2020;52:217–23.

    Article  CAS  Google Scholar 

  10. Mujtaba A, Keller M, Ilisch S, Radusch H-J, Thurn-Albrecht T, Saalwachter K, et al. Mechanical properties and cross-link density of styrene–butadiene model composites containing fillers with bimodal particle size distribution. Macromolecules. 2012;45:6504–15.

    Article  CAS  Google Scholar 

  11. Paran SMR, Karimi M, Saeb MR. Fabrication methods of carbon-based rubber nanocomposites. In: Carbon-based nanofillers and their rubber nanocomposites. Elsevier: Amsterdam; 2019. p. 355–80.

  12. Jing Y, Niu H, Li Y. Improved ethylene-propylene rubber/silica interface via in-situ polymerization. Polymer. 2019;172:117–25.

    Article  CAS  Google Scholar 

  13. Song SH. Effect of surfactants on MWNT filled elastomer composites by latex mixing. Polym Eng Sci. 2018;58:1843–8.

    Article  CAS  Google Scholar 

  14. Hosseini SM, Torbati-Fard N, Kiyani H, Razzaghi-Kashani M. Comparative role of interface in reinforcing mechanisms of nano silica modified by silanes and liquid rubber in SBR composites. J Polym Res. 2016;23:203.

    Article  Google Scholar 

  15. Bonnevide M, Jimenez AM, Dhara D, Phan TN, Malicki N, Abbas ZM, et al. Morphologies of polyisoprene-grafted silica nanoparticles in model elastomers. Macromolecules. 2019;52:7638–45.

    Article  CAS  Google Scholar 

  16. Bonnevide M, Phan TN, Malicki N, Kumar SK, Couty M, Gigmes D, et al. Synthesis of polyisoprene, polybutadiene and Styrene Butadiene Rubber grafted silica nanoparticles by nitroxide-mediated polymerization. Polymer. 2020;190:122190.

    Article  Google Scholar 

  17. Zhao G, Shi L, Zhang D, Feng X, Yuan S, Zhuo J. Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater Des. 2012;35:847–53.

    Article  CAS  Google Scholar 

  18. Feng W, Tang Z, Weng P, Guo B. Correlation of filler networking with reinforcement and dynamic properties of SSBR/carbon black/silica composites. Rubber Chem Technol. 2015;88:676–89.

    Article  CAS  Google Scholar 

  19. Tang Z, Zhang C, Wei Q, Weng P, Guo B. Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets. Compos Sci Technol. 2016;132:93–100.

    Article  CAS  Google Scholar 

  20. Etika KC, Liu L, Hess LA, Grunlan JC. The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon. 2009;47:3128–36.

    Article  CAS  Google Scholar 

  21. Sattayanurak S, Sahakaro K, Kaewsakul W, Dierkes WK, Reuvekamp LA, Blume A, et al. Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym Test. 2020;81:106173.

    Article  CAS  Google Scholar 

  22. Hassankhani H, Atashi H, Mohebbi-Kalhori D. Reducing of heat loss of rubber compound using natural zeolite filler: effect of partially substitution of fillers on compound properties. Iran Polym J. 2018;27:555–61.

    Article  CAS  Google Scholar 

  23. Aghajan MH, Hosseini SM, Razzaghi-Kashani M. Particle packing in bimodal size carbon black mixtures and its effect on the properties of styrene-butadiene rubber compounds. Polym Test. 2019;78:106002.

  24. Galimberti M, Agnelli S, Cipolletti V. Hybrid filler systems in rubber nanocomposites. In: Progress in Rubber Nanocomposites. Elsevier: Amsterdam; 2017. p. 349–414.

  25. Jafarpour E, Shojaei A, Ahmadijokani F. High-performance styrene-butadiene rubber nanocomposites based on carbon nanotube/nanodiamond hybrid with synergistic thermal conduction characteristics and electrically insulating properties. Polymer. 2020;196:122470.

    Article  CAS  Google Scholar 

  26. Shiva M, Lakhi M. Studying the effects of silica/alumina and silica/boehmite binary filler on the mechanical properties and the non-isothermal curing time of carbon black filled tyre tread composite. Compos B Eng. 2019;175:107124.

    Article  CAS  Google Scholar 

  27. Abdul Salim ZAS, Hassan A, Ismail H. A review on hybrid fillers in rubber composites. Polym Plast Technol Eng. 2018;57:523–39.

    Article  CAS  Google Scholar 

  28. Rooj S, Das A, Stöckelhuber K, Wießner S, Fischer D, Reuter U, et al. ‘Expanded organoclay’assisted dispersion and simultaneous structural alterations of multiwall carbon nanotube (MWCNT) clusters in natural rubber. Compos Sci Technol. 2015;107:36–43.

    Article  CAS  Google Scholar 

  29. Hosseini SM, Razzaghi-Kashani M. Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber. Soft Matter. 2018;14:9194–208.

    Article  CAS  Google Scholar 

  30. Hosseini SM, Razzaghi-Kashani M. Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer. 2014;55:6426–34.

    Article  CAS  Google Scholar 

  31. Hentschke R. The Payne effect revisited. eXPRESS Polym Lett. 2017;11:278–92.

  32. Maier P, Goritz D. Molecular interpretation of the Payne effect. Kautsch Gummi Kunstst. 1996;49:18–21.

    CAS  Google Scholar 

  33. Mahtabani A, Alimardani M, Razzaghi-Kashani M. Further evidence of filler–filler mechanical engagement in rubber compounds filled with silica treated by long-chain silane. Rubber Chem Technol. 2017;90:508–20.

    Article  CAS  Google Scholar 

  34. Meier JG, Klüppel M. Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng. 2008;293:12–38.

    Article  CAS  Google Scholar 

  35. Israelachvili JN. Intermolecular and surface forces: Academic Press: Amsterdam; 2015.

  36. Wang M-J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol. 1998;71:520–89.

    Article  CAS  Google Scholar 

  37. Torbati-Fard N, Hosseini SM, Razzaghi-Kashani M. Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polym J. 2020;52:1223–34.

    Article  CAS  Google Scholar 

  38. Mortezaei M, Mohammad Hossein Navid F, Mohammad, Reza K. Effect of immobilized interfacial layer on the maximum filler loading of polystyrene/silica nanocomposites. J Reinf Plast Compos. 2011;30:593–9.

    Article  CAS  Google Scholar 

  39. Litvinov V, Orza R, Kluppel M, Van Duin M, Magusin P. Rubber–filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled EPDM. Macromolecules. 2011;44:4887–900.

    Article  CAS  Google Scholar 

  40. Hosseini SM, Razzaghi-Kashani M. On the role of nano-silica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber. Polymer. 2017;133:8–19.

    Article  CAS  Google Scholar 

  41. Raef M, Hosseini SM, Nabavian Kalat M, Razzaghi‐Kashani M. Vulcanization kinetics of styrene butadiene rubber reinforced by graphenic particles. SPE Polym. 2021;2:122–33.

    Article  Google Scholar 

  42. Jafari F, Razzaghi‐Kashani M, Hosseini SM, Pourhossaini MR. Effects of modified poly (tetrafluoroethylene) on the p hysico‐mechanical and tribological properties of carbon‐black filled nitrile‐butadiene rubber. J Appl Polym Sci. 2021;138:50061.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Kashani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrollahi, A., Razzaghi-Kashani, M., Hosseini, S.M. et al. Carbon black/silica hybrid filler networking and its synergistic effects on the performance of styrene-butadiene rubber composites. Polym J 54, 931–942 (2022). https://doi.org/10.1038/s41428-022-00630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00630-2

This article is cited by

Search

Quick links