Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer

An Erratum to this article was published on 12 November 2013

Abstract

Sprouty1 (Spry1) is a negative regulator of fibroblast growth factor signaling with a potential tumor suppressor function in prostate cancer (PCa). Spry1 is downregulated in human PCa, and Spry1 expression can markedly inhibit PCa proliferation in vitro. We have reported DNA methylation as a mechanism for controlling Spry1 expression. However, promoter methylation does not seem to explain gene silencing in all PCa cases studied to suggest other mechanisms of gene inactivation, such as alterations in trans-acting factors and/or post-transcriptional activity may be responsible for the decreased expression in those cases. Binding sites for Wilm's tumor (WT1) transcription factors EGR1, EGR3 and WTE are highly conserved between the mouse and human Spry1 promoter regions, suggesting an evolutionary conserved mechanism(s) involving WT1 and EGR in Spry1 regulation. Spry1 mRNA contains multiple microRNA (miRNA) binding sites in its 3′UTR region suggesting post-transcriptional control. We demonstrate that Spry1 is a target for miR-21-mediated gene silencing. miRNA-based therapeutic approaches to treat cancer are emerging. Spry1 is highly regulated by miRNAs and could potentially be an excellent candidate for such approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kwabi-Addo B, Ozen M, Ittmann M . The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 2004; 11: 709–724.

    Article  CAS  PubMed  Google Scholar 

  2. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA . Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998; 92: 253–263.

    Article  CAS  PubMed  Google Scholar 

  3. Casci T, Vinos J, Freeman M . Sprouty, an intracellular inhibitor of Ras signaling. Cell 1999; 96: 655–665.

    Article  CAS  PubMed  Google Scholar 

  4. Kramer S, Okabe M, Hacohen N, Krasnow MA, Hiromi Y . Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 1999; 126: 2515–2525.

    CAS  PubMed  Google Scholar 

  5. Reich A, Sapir A, Shilo B . Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 1999; 126: 4139–4147.

    CAS  PubMed  Google Scholar 

  6. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N et al. Vertebrate sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 1999; 126: 4465–4475.

    CAS  PubMed  Google Scholar 

  7. de Maximy AA, Nakatake Y, Moncada S, Itoh N, Thiery JP, Bellusci S . Cloning and expression pattern of a mouse homologue of drosophila sprouty in the mouse embryo. Mech Dev 1999; 81: 213–216.

    Article  CAS  PubMed  Google Scholar 

  8. Hanafusa H, Torii S, Yasunaga T, Nishida E . Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002; 4: 850–858.

    Article  CAS  PubMed  Google Scholar 

  9. Gross I, Bassit B, Benezra M, Licht JD . Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 2001; 276: 46460–46468.

    Article  CAS  PubMed  Google Scholar 

  10. Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB . The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 2001; 276: 22742–22747.

    Article  CAS  PubMed  Google Scholar 

  11. Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G . Mammalian Sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 2001; 152: 1087–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A . Identification of a dominant negative mutant of sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 2001; 276: 36804–36808.

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 2003; 5: 427–432.

    Article  CAS  PubMed  Google Scholar 

  14. Kim HJ, Bar-Sagi D . Modulation of signalling by sprouty: a developing story. Nat Rev Mol Cell Biol 2004; 5: 441–450.

    Article  CAS  PubMed  Google Scholar 

  15. Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW et al. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol 2002; 22: 7953–7966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Panagiotaki N, Dajas-Bailador F, Amaya E, Papalopulu N, Dorey K . Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo. Development 2010; 137: 4005–4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwabi-Addo B, Wang J, Erdem H, Vaid A, Castro P, Ayala G et al. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 2004; 64: 4728–4735.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Thompson B, Ren C, Ittmann M, Kwabi-Addo B . Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate 2006; 66: 613–624.

    Article  CAS  PubMed  Google Scholar 

  19. McKie AB, Douglas DA, Olijslagers S, Graham J, Omar MM, Heer R et al. Epigenetic inactivation of the human Sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene 2005; 24: 2166–2174.

    Article  CAS  PubMed  Google Scholar 

  20. Kwabi-Addo B, Ren C, Ittmann M . DNA methylation and aberrant expression of Sprouty1 in human prostate cancer. Epigenetics 2009; 4: 54–61.

    Article  CAS  PubMed  Google Scholar 

  21. Zimarino V, Wu C . Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature 1987; 327: 727–730.

    Article  CAS  PubMed  Google Scholar 

  22. Rosa AL, Wu YQ, Kwabi-Addo B, Coveler KJ, Reid SV, Shaffer LG . Allele-specific methylation of a functional CTCF binding site upstream of MEG3 in the human imprinted domain of 14q32. Chromosome Res 2005; 13: 809–818.

    Article  CAS  PubMed  Google Scholar 

  23. Quandt K, Frech K, Karas H, Wingender E, Werner T . MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23: 4878–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong QH, Stern J, Dean A . Transcriptional role of a conserved GATA-1 site in the human epsilon-globin gene promoter. Mol Cell Biol 1991; 11: 2558–2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eid MA, Kumar MV, Iczkowski KA, Bostwick DG, Tindall DJ . Expression of early growth response genes in human prostate cancer. Cancer Res 1998; 58: 2461–2468.

    CAS  PubMed  Google Scholar 

  26. Ibanez-Tallon I, Ferrai C, Longobardi E, Facetti I, Blasi F, Crippa MP . Binding of Sp1 to the proximal promoter links constitutive expression of the human uPA gene and invasive potential of PC3 cells. Blood 2002; 100: 3325–3332.

    Article  CAS  PubMed  Google Scholar 

  27. Kamps MP, Murre C, Sun XH, Baltimore D . A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990; 60: 547–555.

    Article  CAS  PubMed  Google Scholar 

  28. Svoboda M, Riha J, Wlcek K, Jaeger W, Thalhammer T . Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab 2011; 12: 139–153.

    Article  CAS  PubMed  Google Scholar 

  29. Morris JF, Madden SL, Tournay OE, Cook DM, Sukhatme VP, Rauscher III FJ . Characterization of the zinc finger protein encoded by the WT1 Wilms' tumor locus. Oncogene 1991; 6: 2339–2348.

    CAS  PubMed  Google Scholar 

  30. Nakagama H, Heinrich G, Pelletier J, Housman DE . Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol Cell Biol 1995; 15: 1489–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding W, Bellusci S, Shi W, Warburton D . Functional analysis of the human Sprouty2 gene promoter. Gene 2003; 322: 175–185.

    Article  CAS  PubMed  Google Scholar 

  32. Ding W, Bellusci S, Shi W, Warburton D . Genomic structure and promoter characterization of the human Sprouty4 gene, a novel regulator of lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 2004; 287: L52–L59.

    Article  CAS  PubMed  Google Scholar 

  33. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980–984.

    Article  CAS  PubMed  Google Scholar 

  34. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ozaki K, Kadomoto R, Asato K, Tanimura S, Itoh N, Kohno M . ERK pathway positively regulates the expression of sprouty genes. Biochem Biophys Res Commun 2001; 285: 1084–1088.

    Article  CAS  PubMed  Google Scholar 

  36. Baron V, Duss S, Rhim J, Mercola D . Antisense to the early growth response-1 gene (Egr-1) inhibits prostate tumor development in TRAMP mice. Ann NY Acad Sci 2003; 1002: 197–216.

    Article  CAS  PubMed  Google Scholar 

  37. Baron V, De GG, Krones-Herzig A, Virolle T, Calogero A, Urcis R et al. Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo. Oncogene 2003; 22: 4194–4204.

    Article  CAS  PubMed  Google Scholar 

  38. Bohm M, Locke WJ, Sutherland RL, Kench JG, Henshall SM . A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 2009; 28: 3847–3856.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Department of Defense Prostate Cancer Research Program New Investigator Award (PC040326) to BK-A. MI received support from the Department of Veterans Affairs Merit Review program and from the National Cancer Institute to the Baylor prostate cancer SPORE program (P50CA058204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kwabi-Addo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darimipourain, M., Wang, S., Ittmann, M. et al. Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer Prostatic Dis 14, 279–285 (2011). https://doi.org/10.1038/pcan.2011.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.33

Keywords

This article is cited by

Search

Quick links