Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment

Abstract

Urothelial carcinoma (UC) carcinogenesis has been hypothesized to occur through epigenetic repression of tumor-suppressor genes (TSGs). By quantitative real-time polymerase chain reaction array, we found that one potential TSG, angiopoietin-like 4 (ANGPTL4), was expressed at very low levels in all bladder cancer cell lines we examined. Previous studies had demonstrated that ANGPTL4 is highly expressed in some cancers, but downregulated, by DNA methylation, in others. Consequently, owing to these seemingly conflicting functions in distinct cancers, the precise role of ANGPTL4 in the etiology of UC remains unclear. In this study, using methylation-specific PCR and bisulfite pyrosequencing, we show that ANGPTL4 is transcriptionally repressed by DNA methylation in UC cell lines and primary tumor samples, as compared with adjacent noncancerous bladder epithelium. Functional studies further demonstrated that ectopic expression of ANGPTL4 potently suppressed UC cell proliferation, monolayer colony formation in vitro, and invasion, migration, and xenograft formation in vivo. Surprisingly, circulating ANGPTL4 was significantly higher in plasma samples from UC patients than normal control, suggesting it might be secreted from other cell types. Interestingly, our data also indicated that exogenous cANGPTL4 could promote cell proliferation and cell migration via activation of signaling through the Erk/focal adhesion kinase axis. We further confirmed that mouse xenograft tumor growth could be promoted by administration of exogenous cANGPTL4. Finally, immunohistochemistry demonstrated that ANGPTL4 was downregulated in tumor cells but overexpressed in tumor adjacent stromal tissues of muscle-invasive UC tissue samples. In conclusion, our data support dual roles for ANGPTL4 in UC progression, either as a tumor suppressor or oncogene, in response to microenvironmental context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang YH, Yeh SD, Shen KH, Shen CH, Juang GD, Hsu LI et al. A significantly joint effect between arsenic and occupational exposures and risk genotypes/diplotypes of CYP2E1, GSTO1 and GSTO2 on risk of urothelial carcinoma. Toxicol Appl Pharmacol 2009; 241: 111–118.

    Article  CAS  PubMed  Google Scholar 

  2. Roupret M, Zigeuner R, Palou J, Boehle A, Kaasinen E, Sylvester R et al. European guidelines for the diagnosis and management of upper urinary tract urothelial cell carcinomas: 2011 update. Eur Urol 2011; 59: 584–594.

    Article  PubMed  Google Scholar 

  3. Studer UE, Bacchi M, Biedermann C, Jaeger P, Kraft R, Mazzucchelli L et al. Adjuvant cisplatin chemotherapy following cystectomy for bladder cancer: results of a prospective randomized trial. J Urol 1994; 152: 81–84.

    Article  CAS  PubMed  Google Scholar 

  4. Kakizoe T . Development and progression of urothelial carcinoma. Cancer Sci 2006; 97: 821–828.

    Article  CAS  PubMed  Google Scholar 

  5. Kim WJ, Bae SC . Molecular biomarkers in urothelial bladder cancer. Cancer Sci 2008; 99: 646–652.

    Article  CAS  PubMed  Google Scholar 

  6. Costa VL, Henrique R, Ribeiro FR, Carvalho JR, Oliveira J, Lobo F et al. Epigenetic regulation of Wnt signaling pathway in urological cancer. Epigenetics 2010; 5: 343–351.

    Article  CAS  PubMed  Google Scholar 

  7. Kastritis E, Murray S, Kyriakou F, Horti M, Tamvakis N, Kavantzas N et al. Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt pathway implication. Int J Cancer 2009; 124: 103–108.

    Article  CAS  PubMed  Google Scholar 

  8. Schulz WA . Understanding urothelial carcinoma through cancer pathways. Int J Cancer 2006; 119: 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  9. Shiina H, Igawa M, Shigeno K, Terashima M, Deguchi M, Yamanaka M et al. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 genes in bladder cancer. J Urol 2002; 168: 2220–2226.

    Article  CAS  PubMed  Google Scholar 

  10. Urakami S, Shiina H, Enokida H, Kawakami T, Tokizane T, Ogishima T et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 2006; 12: 383–391.

    Article  CAS  PubMed  Google Scholar 

  11. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levine AJ, Puzio-Kuter AM . The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.

    Article  CAS  PubMed  Google Scholar 

  13. Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  14. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    Article  CAS  PubMed  Google Scholar 

  15. Khandekar MJ, Cohen P, Spiegelman BM . Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 2011; 11: 886–895.

    Article  CAS  PubMed  Google Scholar 

  16. Kersten S . Regulation of lipid metabolism via angiopoietin-like proteins. Biochem Soc Trans 2005; 33: 1059–1062.

    Article  CAS  PubMed  Google Scholar 

  17. Oike Y, Akao M, Kubota Y, Suda T . Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 2005; 11: 473–479.

    Article  CAS  PubMed  Google Scholar 

  18. Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C . Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem 2004; 279: 2038–2045.

    Article  CAS  PubMed  Google Scholar 

  19. Hato T, Tabata M, Oike Y . The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med 2008; 18: 6–14.

    Article  CAS  PubMed  Google Scholar 

  20. Katoh Y, Katoh M . Comparative integromics on angiopoietin family members. Int J Mol Med 2006; 17: 1145–1149.

    CAS  PubMed  Google Scholar 

  21. Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS et al. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 2000; 346 (Pt 3): 603–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SH, Park YY, Kim SW, Lee JS, Wang D, DuBois RN . ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res 2011; 71: 7010–7020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133: 66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 2000; 20: 5343–5349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 2011; 19: 401–415.

    Article  CAS  PubMed  Google Scholar 

  26. Chomel C, Cazes A, Faye C, Bignon M, Gomez E, Ardidie-Robouant C et al. Interaction of the coiled-coil domain with glycosaminoglycans protects angiopoietin-like 4 from proteolysis and regulates its antiangiogenic activity. FASEB J 2009; 23: 940–949.

    Article  CAS  PubMed  Google Scholar 

  27. Lei X, Shi F, Basu D, Huq A, Routhier S, Day R et al. Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem 2011; 286: 15747–15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J et al. Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol 2008; 28: 835–840.

    Article  CAS  PubMed  Google Scholar 

  29. Cazes A, Galaup A, Chomel C, Bignon M, Brechot N, Le Jan S et al. Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res 2006; 99: 1207–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L et al. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration. Am J Pathol 2010; 177: 2791–2803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 2011; 118: 3990–4002.

    Article  CAS  PubMed  Google Scholar 

  32. Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T et al. Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep 2011; 25: 929–935.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 2012; 31: 1757–1770.

    Article  CAS  PubMed  Google Scholar 

  34. Feng S, Agoulnik IU, Truong A, Li Z, Creighton CJ, Kaftanovskaya EM et al. Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr Relat Cancer 2010; 17: 1021–1033.

    Article  CAS  PubMed  Google Scholar 

  35. Shibata K, Nakayama T, Hirakawa H, Hidaka S, Nagayasu T . Clinicopathological significance of angiopoietin-like protein 4 expression in oesophageal squamous cell carcinoma. J Clin Pathol 2010; 63: 1054–1058.

    Article  PubMed  Google Scholar 

  36. Wang Z, Han B, Zhang Z, Pan J, Xia H . Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers 2010; 15: 39–46.

    Article  CAS  PubMed  Google Scholar 

  37. Hu J, Jham BC, Ma T, Friedman ER, Ferreira L, Wright JM et al. Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi's sarcoma. Oral Oncol 2011; 47: 371–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hattori N, Okochi-Takada E, Kikuyama M, Wakabayashi M, Yamashita S, Ushijima T . Methylation silencing of angiopoietin-like 4 in rat and human mammary carcinomas. Cancer Sci 2011; 102: 1337–1343.

    Article  CAS  PubMed  Google Scholar 

  39. Kaneda A, Kaminishi M, Yanagihara K, Sugimura T, Ushijima T . Identification of silencing of nine genes in human gastric cancers. Cancer Res 2002; 62: 6645–6650.

    PubMed  Google Scholar 

  40. Zhang H, Wei S, Ning S, Jie Y, Ru Y, Gu Y . Evaluation of TGFbeta, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC. Exp Ther Med 2013; 5: 119–127.

    Article  CAS  PubMed  Google Scholar 

  41. Verine J, Lehmann-Che J, Soliman H, Feugeas JP, Vidal JS, Mongiat-Artus P et al. Determination of angptl4 mRNA as a diagnostic marker of primary and metastatic clear cell renal-cell carcinoma. PLoS ONE 2010; 5: e10421.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nakayama T, Hirakawa H, Shibata K, Abe K, Nagayasu T, Taguchi T . Expression of angiopoietin-like 4 in human gastric cancer: ANGPTL4 promotes venous invasion. Oncol Rep 2010; 24: 599–606.

    Article  CAS  PubMed  Google Scholar 

  43. Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto S et al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res 2003; 63: 6651–6657.

    CAS  PubMed  Google Scholar 

  44. Okochi-Takada E, Hattori N, Tsukamoto T, Miyamoto K, Ando T, Ito S et al. ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene 2014; 33: 2273–2278.

    Article  CAS  PubMed  Google Scholar 

  45. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L et al. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem 2010; 285: 32999–33009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arnold SA, Brekken RA . SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3: 255–273.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chiodoni C, Colombo MP, Sangaletti S . Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 2010; 29: 295–307.

    Article  CAS  PubMed  Google Scholar 

  48. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E et al. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA 2006; 103: 18721–18726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsieh HY, Shen CH, Lin RI, Feng YM, Huang SY, Wang YH et al. Cyproheptadine exhibits antitumor activity in urothelial carcinoma cells by targeting GSK3beta to suppress mTOR and beta-catenin signaling pathways. Cancer Lett 2016; 370: 56–65.

    Article  CAS  PubMed  Google Scholar 

  50. Muendlein A, Saely CH, Leiherer A, Fraunberger P, Kinz E, Rein P et al. Angiopoietin-like protein 4 significantly predicts future cardiovascular events in coronary patients. Atherosclerosis 2014; 237: 632–638.

    Article  CAS  PubMed  Google Scholar 

  51. Wu YQ, Shen YC, Wang H, Zhang JL, Li DD, Zhang X et al. Serum angiopoietin-like 4 is over-expressed in COPD patients: association with pulmonary function and inflammation. Eur Rev Med Pharmacol Sci 2016; 20: 44–53.

    PubMed  Google Scholar 

  52. Swales C, Athanasou NA, Knowles HJ . Angiopoietin-like 4 is over-expressed in rheumatoid arthritis patients: association with pathological bone resorption. PLoS ONE 2014; 9: e109524.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Clement LC, Mace C, Avila-Casado C, Joles JA, Kersten S, Chugh SS . Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 2014; 20: 37–46.

    Article  CAS  PubMed  Google Scholar 

  54. Tjeerdema N, Georgiadi A, Jonker JT, van Glabbeek M, Alizadeh Dehnavi R, Tamsma JT et al. Inflammation increases plasma angiopoietin-like protein 4 in patients with the metabolic syndrome and type 2 diabetes. BMJ Open Diabetes Res Care 2014; 2: e000034.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chong HC, Tan CK, Huang RL, Tan NS . Matricellular proteins: a sticky affair with cancers. J Oncol 2012; 2012: 351089.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS . Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res 2012; 10: 677–688.

    Article  CAS  PubMed  Google Scholar 

  57. Huang C, Jacobson K, Schaller MD . MAP kinases and cell migration. J Cell Sci 2004; 117: 4619–4628.

    Article  CAS  PubMed  Google Scholar 

  58. Foreman JE, Sharma AK, Amin S, Gonzalez FJ, Peters JM . Ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) inhibits cell growth in a mouse mammary gland cancer cell line. Cancer Lett 2010; 288: 219–225.

    Article  CAS  PubMed  Google Scholar 

  59. Girroir EE, Hollingshead HE, Billin AN, Willson TM, Robertson GP, Sharma AK et al. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology 2008; 243: 236–243.

    Article  CAS  PubMed  Google Scholar 

  60. Ng KT, Xu A, Cheng Q, Guo DY, Lim ZX, Sun CK et al. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol Cancer 2014; 13: 196.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yeh CM, Shay J, Zeng TC, Chou JL, Huang TH, Lai HC et al. Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int J Oncol 2014; 45: 2101–2107.

    Article  CAS  PubMed  Google Scholar 

  62. Ma T, Jham BC, Hu J, Friedman ER, Basile JR, Molinolo A et al. Viral G protein-coupled receptor up-regulates Angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi's sarcoma. Proc Natl Acad Sci USA 2010; 107: 14363–14368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP . Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol 2008; 10: 31–43.

    PubMed  PubMed Central  Google Scholar 

  64. Wang YH, Chiou HY, Lin CT, Hsieh HY, Wu CC, Hsu CD et al. Association between survivin gene promoter -31 C/G polymorphism and urothelial carcinoma risk in Taiwanese population. Urology 2009; 73: 670–674.

    Article  PubMed  Google Scholar 

  65. Lin HY, Hung SK, Lee MS, Chiou WY, Huang TT, Tseng CE et al. DNA methylome analysis identifies epigenetic silencing of FHIT as a determining factor for radiosensitivity in oral cancer: an outcome-predicting and treatment-implicating study. Oncotarget 2015; 6: 915–934.

    PubMed  Google Scholar 

  66. Zordan MD, Mill CP, Riese DJ 2nd, Leary JF . A high throughput, interactive imaging, bright-field wound healing assay. Cytometry A 2011; 79: 227–232.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  68. Huang, da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ditmanson Medical Foundation Chiayi Christian Hospital, Taiwan (grant no. R101-9) and the Ministry of Science and Technology, Taiwan (MOST 104-2314-B-194-001-MY3). The authors would like to thank Dr Curt Balch for English editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M W Y Chan or C-D Hsu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, HY., Jou, YC., Tung, CL. et al. Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment. Oncogene 37, 673–686 (2018). https://doi.org/10.1038/onc.2017.375

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.375

This article is cited by

Search

Quick links