Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

‘MCC’ protein interacts with E-cadherin and β-catenin strengthening cell–cell adhesion of HCT116 colon cancer cells

Abstract

E-cadherin and β-catenin are key proteins that are essential in the formation of the epithelial cell layer in the colon but their regulatory pathways that are disrupted in cancer metastasis are not completely understood. Mutated in colorectal cancer (MCC) is a tumour suppressor gene that is silenced by promoter methylation in colorectal cancer and particularly in patients with increased lymph node metastasis. Here, we show that MCC methylation is found in 45% of colon and 24% of rectal cancers and is associated with proximal colon, poorly differentiated, circumferential and mucinous tumours as well as increasing T stage and larger tumour size. Knockdown of MCC in HCT116 colon cancer cells caused a reduction in E-cadherin protein level, which is a hallmark of epithelial–mesenchymal transition in cancer, and consequently diminished the E-cadherin/β-catenin complex. MCC knockdown disrupted cell–cell adhesive strength and integrity in the dispase and transepithelial electrical resistance assays, enhanced hepatocyte growth factor-induced cell scatter and increased tumour cell invasiveness in an organotypic assay. The Src/Abl inhibitor dasatinib, a candidate anti-invasive drug, abrogated the invasive properties induced by MCC deficiency. Mechanistically, we establish that MCC interacts with the E-cadherin/β-catenin complex. These data provide a significant advance in the current understanding of cell–cell adhesion in colon cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pangon L, Sigglekow ND, Larance M, Al-Sohaily S, Mladenova DN, Selinger CI et al. The ‘mutated in colorectal cancer’ protein is a novel target of the UV-induced DNA damage checkpoint. Genes Cancer 2010; 1: 917–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gamazon ER, Lamba JK, Pounds S, Stark AL, Wheeler HE, Cao X et al. Comprehensive genetic analysis of cytarabine sensitivity in a cell-based model identifies polymorphisms associated with outcome in AML patients. Blood 2013; 121: 4366–4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumine A, Senda T, Baeg GH, Roy BC, Nakamura Y, Noda M et al. MCC, a cytoplasmic protein that blocks cell cycle progression from the G0/G1 to S phase. J Biol Chem 1996; 271: 10341–10346.

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  5. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991; 253: 665–669.

    Article  CAS  PubMed  Google Scholar 

  6. Kohonen-Corish MR, Sigglekow ND, Susanto J, Chapuis PH, Bokey EL, Dent OF et al. Promoter methylation of the mutated in colorectal cancer gene is a frequent early event in colorectal cancer. Oncogene 2007; 26: 4435–4441.

    Article  CAS  PubMed  Google Scholar 

  7. Sigglekow ND, Pangon L, Brummer T, Molloy M, Hawkins NJ, Ward RL et al. Mutated in colorectal cancer protein modulates the NFkappaB pathway. Anticancer Res 2012; 32: 73–79.

    CAS  PubMed  Google Scholar 

  8. Fukuyama R, Niculaita R, Ng KP, Obusez E, Sanchez J, Kalady M et al. Mutated in colorectal cancer, a putative tumor suppressor for serrated colorectal cancer, selectively represses beta-catenin-dependent transcription. Oncogene 2008; 27: 6044–6055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu X, Li L, Peng Y . Wnt signalling pathway in the serrated neoplastic pathway of the colorectum: possible roles and epigenetic regulatory mechanisms. J Clin Pathol 2012; 65: 675–679.

    Article  CAS  PubMed  Google Scholar 

  10. Shukla R, Upton KR, Munoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013; 153: 101–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim L, Balakrishnan A, Huskey N, Jones KD, Jodari M, Ng R et al. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology 2014; 59: 202–215.

    Article  CAS  PubMed  Google Scholar 

  12. Poursoltan P, Currey N, Pangon L, van Kralingen C, Selinger CI, Mahar A et al. Loss of heterozygosity of the Mutated in Colorectal Cancer gene is not associated with promoter methylation in non-small cell lung cancer. Lung Cancer 2012; 77: 272–276.

    Article  PubMed  Google Scholar 

  13. Starr TK, Allaei R, Silverstein KA, Staggs RA, Sarver AL, Bergemann TL et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 2009; 323: 1747–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bard-Chapeau EA, Nguyen AT, Rust AG, Sayadi A, Lee P, Chua BQ et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 2014; 46: 24–32.

    Article  CAS  PubMed  Google Scholar 

  15. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  16. Shook D, Keller R . Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev 2003; 120: 1351–1383.

    Article  CAS  PubMed  Google Scholar 

  17. Kalluri R, Neilson EG . Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Behrens J, Birchmeier W, Goodman SL, Imhof BA . Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J Cell Biol 1985; 101: 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  20. Nagafuchi A, Takeichi M . Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 1988; 7: 3679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ozawa M, Baribault H, Kemler R . The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8: 1711–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pangon L, Mladenova D, Watkins L, Van Kralingen C, Currey N, Al-Sohaily S et al. MCC inhibits beta-catenin transcriptional activity by sequestering DBC1 in the cytoplasm. Int J Cancer 2015; 136: 55–64.

    Article  CAS  PubMed  Google Scholar 

  23. Huang RY, Guilford P, Thiery JP . Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 2012; 125: 4417–4422.

    Article  CAS  PubMed  Google Scholar 

  24. Arnaud C, Sebbagh M, Nola S, Audebert S, Bidaut G, Hermant A et al. MCC, a new interacting protein for Scrib, is required for cell migration in epithelial cells. FEBS Lett 2009; 583: 2326–2332.

    Article  CAS  PubMed  Google Scholar 

  25. Pangon L, Van Kralingen C, Abas M, Daly RJ, Musgrove EA, Kohonen-Corish MR . The PDZ-binding motif of MCC is phosphorylated at position -1 and controls lamellipodia formation in colon epithelial cells. Biochim Biophys Acta 2012; 1823: 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  26. Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M . Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 1995; 378: 85–88.

    Article  CAS  PubMed  Google Scholar 

  27. Tejedor FJ, Bokhari A, Rogero O, Gorczyca M, Zhang J, Kim E et al. Essential role for dlg in synaptic clustering of Shaker K+ channels in vivo. J Neurosci 1997; 17: 152–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fleming M, Ravula S, Tatishchev SF, Wang HL . Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol 2012; 3: 153–173.

    PubMed  PubMed Central  Google Scholar 

  29. Compton CC . Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol 2003; 16: 376–388.

    Article  PubMed  Google Scholar 

  30. Griffin MJ . Synchronization of some human cell strains by serum and calcium starvation. In Vitro 1976; 12: 393–398.

    Article  CAS  PubMed  Google Scholar 

  31. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Dotto GP . Tyrosine phosphorylation and src family kinases control keratinocyte cell–cell adhesion. J Cell Biol 1998; 141: 1449–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. von Bonsdorff C-H, Fuller SD, Simons K . Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J 1985; 4: 2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spina A, De Pasquale V, Cerulo G, Cocchiaro P, Della Morte R, Avallone L et al. HGF/c-MET axis in tumor microenvironment and metastasis formation. Biomedicines 2015; 3: 71–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Serrels A, Timpson P, Canel M, Schwarz JP, Carragher NO, Frame MC et al. Real-time study of E-cadherin and membrane dynamics in living animals: implications for disease modeling and drug development. Cancer Res 2009; 69: 2714–2719.

    Article  CAS  PubMed  Google Scholar 

  35. Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 2010; 139: 292–303.

    Article  CAS  PubMed  Google Scholar 

  36. Erami Z, Herrmann D, Warren SC, Nobis M, McGhee EJ, Lucas MC et al. Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease-and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Rep 2016; 14: 152–167.

    Article  CAS  PubMed  Google Scholar 

  37. Antoni D, Burckel H, Josset E, Noel G . Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 2015; 16: 5517–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR et al. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; Article ID 567305.

  39. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim K, Lu Z, Hay ED . Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 2002; 26: 463–476.

    Article  CAS  PubMed  Google Scholar 

  41. Tsai JH, Yang J . Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes & development 2013; 27: 2192–2206.

    Article  CAS  Google Scholar 

  42. Mizuno S, Nakamura T . HGF–Met cascade, a key target for inhibiting cancer metastasis: The impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 2013; 14: 888–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT, Aziz K et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 2014; 204: 839–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. David JM, Rajasekaran AK . Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res 2012; 72: 2917–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nobis M, McGhee EJ, Morton JP, Schwarz JP, Karim SA, Quinn J et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res 2013; 73: 4674–4686.

    Article  CAS  PubMed  Google Scholar 

  46. Gargalionis AN, Karamouzis MV, Papavassiliou AG . The molecular rationale of Src inhibition in colorectal carcinomas. Int J Cancer 2014; 134: 2019–2029.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Sohaily S, Henderson C, Selinger C, Pangon L, Segelov E, Kohonen-Corish MR et al. Loss of special AT-rich sequence-binding protein 1 (SATB1) predicts poor survival in patients with colorectal cancer. Histopathology 2014; 65: 155–163.

    Article  PubMed  Google Scholar 

  48. Kohonen-Corish MR, Tseung J, Chan C, Currey N, Dent OF, Clarke S et al. KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer. Int J Cancer 2014; 134: 2820–2828.

    Article  CAS  PubMed  Google Scholar 

  49. Pangon L, Ng I, Giry-Laterriere M, Currey N, Morgan A, Benthani F et al. JRK is a positive regulator of beta-catenin transcriptional activity commonly overexpressed in colon, breast and ovarian cancer. Oncogene 2016; 35: 2834–2841.

    Article  CAS  PubMed  Google Scholar 

  50. Giry-Laterriere M, Cherpin O, Kim YS, Jensen J, Salmon P . Polyswitch lentivectors: "all-in-one" lentiviral vectors for drug-inducible gene expression, live selection, and recombination cloning. Hum Gene Ther 2011; 22: 1255–1267.

    Article  CAS  PubMed  Google Scholar 

  51. Canel M, Serrels A, Miller D, Timpson P, Serrels B, Frame MC et al. Quantitative in vivo imaging of the effects of inhibiting integrin signalling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res 2010; 70: 9413–9422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Howard S, Deroo T, Fujita Y, Itasaki N . A positive role of cadherin in wnt/β-catenin signalling during epithelial-mesenchymal transition. PLoS ONE 2011; 6: e23899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen CL, Chen HC . Functional suppression of E-cadherin by protein kinase Cdelta. J Cell Sci 2009; 122: 513–523.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Irvin Ng, Melissa Abas, Sabine Meessen, Monica Killen and Sean Warren for advice and technical assistance. The work was supported by Cancer Council NSW (RG 14-08, RG17-05), NHMRC (1020406, 1043501, 1089497, 1105640, 1129401), Cancer Institute NSW (10CDF232, 12CDF234), the Australian Research Council Future Fellowship (FT120100880), the Len Ainsworth Pancreatic Cancer Fellowship, Cancer Australia and Cure Cancer Australia (1049846), Gastroenterological Society of Australia, Sydney Catalyst and Tour de Cure. The contents of the published material are solely the responsibility of the administering institution, a participating institution or individual authors and do not reflect the views of the NHMRC. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Timpson or M R J Kohonen-Corish.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benthani, F., Herrmann, D., Tran, P. et al. ‘MCC’ protein interacts with E-cadherin and β-catenin strengthening cell–cell adhesion of HCT116 colon cancer cells. Oncogene 37, 663–672 (2018). https://doi.org/10.1038/onc.2017.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.362

Search

Quick links