Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML

Abstract

In acute myeloid leukemia (AML), specific genomic aberrations induce aberrant methylation, thus directly influencing the transcriptional programing of leukemic cells. Therefore, therapies targeting epigenetic processes are advocated as a promising therapeutic tool for AML treatment. However, to develop new therapies, a comprehensive understanding of the mechanism(s) driving the epigenetic changes as a result of acquired genetic abnormalities is necessary. This understanding is still lacking. In this study, we performed genome-wide CpG-island methylation profiling on pediatric AML samples. Six differentially methylated genomic regions within two genes, discriminating inv(16)(p13;q22) from non-inv(16) pediatric AML samples, were identified. All six regions had a hypomethylated phenotype in inv(16) AML samples, and this was most prominent at the regions encompassing the meningioma (disrupted in balanced translocation) 1 (MN1) oncogene. MN1 expression primarily correlated with the methylation level of the 3′ end of the MN1 exon-1 locus. Decitabine treatment of different cell lines showed that induced loss of methylation at the MN1 locus can result in an increase of MN1 expression, indicating that MN1 expression is coregulated by DNA methylation. To investigate this methylation-associated mechanism, we determined the expression of DNA methyltransferases in inv(16) AML. We found that DNMT3B expression was significantly lower in inv(16) samples. Furthermore, DNMT3B expression correlated negatively with MN1 expression in pediatric AML samples. Importantly, depletion of DNMT3B impaired remethylation efficiency of the MN1 exon-1 locus in AML cells after decitabine exposure. These findings identify DNMT3B as an important coregulator of MN1 methylation. Taken together, this study shows that the methylation level of the MN1 exon-1 locus regulates MN1 expression levels in inv(16) pediatric AML. This methylation level is dependent on DNMT3B, thus suggesting a role for DNMT3B in leukemogenesis in inv(16) AML, through MN1 methylation regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Zwaan CM, Kolb EA, Reinhardt D, Abrahamsson J, Adachi S, Aplenc R et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol 2015; 33: 2949–2962.

    Article  CAS  Google Scholar 

  2. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 2012; 120: 3187–3205.

    Article  CAS  Google Scholar 

  3. Inaba H, Fan Y, Pounds S, Geiger TL, Rubnitz JE, Ribeiro RC et al. Clinical and biologic features and treatment outcome of children with newly diagnosed acute myeloid leukemia and hyperleukocytosis. Cancer 2008; 113: 522–529.

    Article  Google Scholar 

  4. Moore AS, Kearns PR, Knapper S, Pearson AD, Zwaan CM . Novel therapies for children with acute myeloid leukaemia. Leukemia 2013; 27: 1451–1460.

    Article  CAS  Google Scholar 

  5. Reed-Inderbitzin E, Moreno-Miralles I, Vanden-Eynden SK, Xie J, Lutterbach B, Durst-Goodwin KL et al. RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription. Oncogene 2006; 25: 5777–5786.

    Article  CAS  Google Scholar 

  6. Bernt KM, Armstrong SA . Targeting epigenetic programs in MLL-rearranged leukemias. Hematol Am Soc Hematol Educ Program 2011; 2011: 354–360.

    Article  Google Scholar 

  7. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  Google Scholar 

  8. Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ . An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 2004; 14: 2063–2069.

    Article  CAS  Google Scholar 

  9. Mandoli A, Singh AA, Jansen PW, Wierenga AT, Riahi H, Franci G et al. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 2014; 28: 770–778.

    Article  CAS  Google Scholar 

  10. Deneberg S, Guardiola P, Lennartsson A, Qu Y, Gaidzik V, Blanchet O et al. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood 2011; 118: 5573–5582.

    Article  CAS  Google Scholar 

  11. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  Google Scholar 

  12. Saied MH, Marzec J, Khalid S, Smith P, Down TA, Rakyan VK et al. Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats. PLoS ONE 2012; 7: e33213.

    Article  CAS  Google Scholar 

  13. Alvarez S, Suela J, Valencia A, Fernandez A, Wunderlich M, Agirre X et al. DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS ONE 2010; 5: e12197.

    Article  Google Scholar 

  14. Bullinger L, Armstrong SA . HELP for AML: methylation profiling opens new avenues. Cancer Cell 2010; 17: 1–3.

    Article  CAS  Google Scholar 

  15. Wilop S, Fernandez AF, Jost E, Herman JG, Brummendorf TH, Esteller M et al. Array-based DNA methylation profiling in acute myeloid leukaemia. Br J Haematol 2011; 155: 65–72.

    Article  CAS  Google Scholar 

  16. Qu X, Davison J, Du L, Storer B, Stirewalt DL, Heimfeld S et al. Identification of differentially methylated markers among cytogenetic risk groups of acute myeloid leukemia. Epigenetics 2015; 10: 526–535.

    Article  Google Scholar 

  17. Grosveld GC . MN1, a novel player in human AML. Blood Cells Mol Dis 2007; 39: 336–339.

    Article  CAS  Google Scholar 

  18. Carella C, Bonten J, Sirma S, Kranenburg TA, Terranova S, Klein-Geltink R et al. MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 2007; 21: 1679–1690.

    Article  CAS  Google Scholar 

  19. Moore LD, Le T, Fan G . DNA methylation and its basic function. Neuropsychopharmacology 2013; 38: 23–38.

    Article  CAS  Google Scholar 

  20. Balgobind BV, Van den Heuvel-Eibrink MM, De Menezes RX, Reinhardt D, Hollink IH, Arentsen-Peters ST et al. Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica 2011; 96: 221–230.

    Article  CAS  Google Scholar 

  21. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  22. Heuser M, Beutel G, Krauter J, Dohner K, von Neuhoff N, Schlegelberger B et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006; 108: 3898–3905.

    Article  CAS  Google Scholar 

  23. Suzuki MM, Bird A . DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465–476.

    Article  CAS  Google Scholar 

  24. Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol 2012; 30: 1350–1357.

    Article  CAS  Google Scholar 

  25. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  Google Scholar 

  26. Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 2014; 28: 1774–1783.

    Article  CAS  Google Scholar 

  27. Walton EL, Francastel C, Velasco G . Maintenance of DNA methylation: Dnmt3b joins the dance. Epigenetics 2011; 6: 1373–1377.

    Article  CAS  Google Scholar 

  28. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002; 22: 480–491.

    Article  CAS  Google Scholar 

  29. Chen T, Ueda Y, Dodge JE, Wang Z, Li E . Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003; 23: 5594–5605.

    Article  CAS  Google Scholar 

  30. Hlady RA, Novakova S, Opavska J, Klinkebiel D, Peters SL, Bies J et al. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest 2012; 122: 163–177.

    Article  CAS  Google Scholar 

  31. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416: 552–556.

    Article  CAS  Google Scholar 

  32. Duymich CE, Charlet J, Yang X, Jones PA, Liang G . DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 2016; 7: 11453.

    Article  Google Scholar 

  33. Chowdhury B, McGovern A, Cui Y, Choudhury SR, Cho IH, Cooper B et al. The hypomethylating agent decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells. Sci Rep 2015; 5: 9281.

    Article  Google Scholar 

  34. Kastl L, Brown I, Schofield AC . Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells. Int J Oncol 2010; 36: 1235–1241.

    CAS  PubMed  Google Scholar 

  35. Mitschka S, Ulas T, Goller T, Schneider K, Egert A, Mertens J et al. Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71. Sci Rep 2015; 5: 11126.

    Article  CAS  Google Scholar 

  36. Chang HM, Martinez NJ, Thornton JE, Hagan JP, Nguyen KD, Gregory RI . Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat Commun 2012; 3: 923.

    Article  Google Scholar 

  37. Heuser M, Argiropoulos B, Kuchenbauer F, Yung E, Piper J, Fung S et al. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood 2007; 110: 1639–1647.

    Article  CAS  Google Scholar 

  38. Wunderlich M, Krejci O, Wei J, Mulloy JC . Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood 2006; 108: 1690–1697.

    Article  CAS  Google Scholar 

  39. Alvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E . Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 2015; 15: 7–17.

    Article  CAS  Google Scholar 

  40. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  Google Scholar 

  41. Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 2006; 108: 3520–3529.

    Article  CAS  Google Scholar 

  42. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009; 113: 5951–5960.

    Article  CAS  Google Scholar 

  43. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11: 1447–1452.

    Article  CAS  Google Scholar 

  44. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  Google Scholar 

  45. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, Beverloo HB, Terlouw-Kromosoeto JN, van Wering ER et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 2008; 111: 4322–4328.

    Article  CAS  Google Scholar 

  46. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490–5498.

    Article  CAS  Google Scholar 

  47. Yan PS, Wei SH, Huang TH . Differential methylation hybridization using CpG island arrays. Methods Mol Biol 2002; 200: 87–100.

    CAS  PubMed  Google Scholar 

  48. Smyth GK, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W . Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer: New York, NY, 2005.

    Google Scholar 

  49. R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2013. Available at: http://www.R-project.org/.

  50. Larmonie NS, van der Spek A, Bogers AJ, van Dongen JJ, Langerak AW . Genetic and epigenetic determinants mediate proneness of oncogene breakpoint sites for involvement in TCR translocations. Genes Immun 2014; 15: 72–81.

    Article  CAS  Google Scholar 

  51. Kumaki Y, Oda M, Okano M . QUMA: quantification tool for methylation analysis. Nucleic Acids Res 2008; 36: W170–W175.

    Article  CAS  Google Scholar 

  52. Foa P, Maiolo AT, Lombardi L, Toivonen H, Rytomaa T, Polli EE . Growth pattern of the human promyelocytic leukaemia cell line HL60. Cell Tissue Kinet 1982; 15: 399–404.

    CAS  PubMed  Google Scholar 

  53. Coombes KR Classes and Methods for 'Class Comparison' Problems on Microarrays, 2.9.0 edn, Cran, 2009. Available at: http://oompa.r-forge.r-project.org/.

Download references

Acknowledgements

We acknowledge L Verboon, NJ Basheer and JM Boer for technical support and advice. This project was supported by grants from the Children Cancer Free Foundation (KIKA), project no. 64, entitled: Aberrant signal transduction profiling in pediatric AML.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Fornerod.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larmonie, N., Arentsen-Peters, T., Obulkasim, A. et al. MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML. Oncogene 37, 107–115 (2018). https://doi.org/10.1038/onc.2017.293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.293

This article is cited by

Search

Quick links