Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis

Abstract

Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M . Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16: 159–178.

    Article  CAS  PubMed  Google Scholar 

  2. Croci DO, Cerliani JP, Pinto NA, Morosi LG, Rabinovich GA . Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology 2014; 24: 1283–1290.

    Article  CAS  PubMed  Google Scholar 

  3. Claesson-Welsh L, Welsh M . VEGFA and tumour angiogenesis. J Intern Med 2013; 273: 114–127.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW . The vascular endothelial growth factor family of polypeptides. Journal of Cellular Biochemistry 1991; 47: 211–218.

    Article  CAS  PubMed  Google Scholar 

  5. Hutchings H, Ortega N, Plouet J . Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. Faseb J 2003; 17: 1520–1522.

    Article  CAS  PubMed  Google Scholar 

  6. Fuh G, Garcia KC, de Vos AM . The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 2000; 275: 26690–26695.

    Article  CAS  PubMed  Google Scholar 

  7. Koch S, Claesson-Welsh L . Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor Perspect Med 2012; 2: a006502.

    Article  Google Scholar 

  8. Tao Q, Backer MV, Backer JM, Terman BI . Kinase insert domain receptor (KDR) extracellular immunoglobulin-like domains 4-7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling. J Biol Chem 2001; 276: 21916–21923.

    Article  CAS  PubMed  Google Scholar 

  9. Rahimi N, Costello CE . Emerging roles of post-translational modifications in signal transduction and angiogenesis. Proteomics 2015; 15: 300–309.

    Article  CAS  PubMed  Google Scholar 

  10. Nacev BA, Grassi P, Dell A, Haslam SM, Liu JO . The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J Biol Chem 2011; 286: 44045–44056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi T, Shibuya M . The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 1997; 14: 2079–2089.

    Article  CAS  PubMed  Google Scholar 

  12. Chuang IC, Yang CM, Song TY, Yang NC, Hu ML . The anti-angiogenic action of 2-deoxyglucose involves attenuation of VEGFR2 signaling and MMP-2 expression in HUVECs. Life Sci 2015; 139: 52–61.

    Article  CAS  PubMed  Google Scholar 

  13. Markowska AI, Jefferies KC, Panjwani N . Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 2011; 286: 29913–29921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID, Dergan-Dylon S et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 2014; 156: 744–758.

    Article  CAS  PubMed  Google Scholar 

  15. Schauer R . Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009; 19: 507–514.

    Article  CAS  PubMed  Google Scholar 

  16. Born GV, Palinski W . Unusually high concentrations of sialic acids on the surface of vascular endothelia. Br J Exp Pathol 1985; 66: 543–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cioffi DL, Pandey S, Alvarez DF, Cioffi EA . Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol 2012; 302: L1067–L1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henry CB, DeFouw DO . Distribution of anionic sites on microvascular endothelium of the chick chorioallantoic membrane. Tissue Cell 1996; 28: 449–454.

    Article  CAS  PubMed  Google Scholar 

  19. Kitazume S, Imamaki R, Kurimoto A, Ogawa K, Kato M, Yamaguchi Y et al. Interaction of platelet endothelial cell adhesion molecule (PECAM) with alpha2,6-sialylated glycan regulates its cell surface residency and anti-apoptotic role. J Biol Chem 2014; 289: 27604–27613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiodelli P, Urbinati C, Mitola S, Tanghetti E, Rusnati M . Sialic acid associated with alphavbeta3 integrin mediates HIV-1 Tat protein interaction and endothelial cell proangiogenic activation. J Biol Chem 2012; 287: 20456–20466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen JY, Tang YA, Huang SM, Juan HF, Wu LW, Sun YC et al. A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res 2011; 71: 473–483.

    Article  CAS  PubMed  Google Scholar 

  22. Fairbrother WJ, Champe MA, Christinger HW, Keyt BA, Starovasnik MA . Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 1998; 6: 637–648.

    Article  CAS  PubMed  Google Scholar 

  23. Miyagawa S, Takeishi S, Yamamoto A, Ikeda K, Matsunari H, Yamada M et al. Survey of glycoantigens in cells from alpha1-3galactosyltransferase knockout pig using a lectin microarray. Xenotransplantation 2010; 17: 61–70.

    Article  PubMed  Google Scholar 

  24. Safina G . Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review. Anal Chim Acta 2012; 712: 9–29.

    Article  CAS  PubMed  Google Scholar 

  25. Manning JC, Seyrek K, Kaltner H, Andre S, Sinowatz F, Gabius HJ . Glycomic profiling of developmental changes in bovine testis by lectin histochemistry and further analysis of the most prominent alteration on the level of the glycoproteome by lectin blotting and lectin affinity chromatography. Histol Histopathol 2004; 19: 1043–1060.

    CAS  PubMed  Google Scholar 

  26. Tatsuzuki A, Ezaki T, Makino Y, Matsuda Y, Ohta H . Characterization of the sugar chain expression of normal term human placental villi using lectin histochemistry combined with immunohistochemistry. Arch Histol Cytol 2009; 72: 35–49.

    Article  PubMed  Google Scholar 

  27. Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ . The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 1987; 262: 1596–1601.

    CAS  PubMed  Google Scholar 

  28. Wang WC, Cummings RD . The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. J Biol Chem 1988; 263: 4576–4585.

    CAS  PubMed  Google Scholar 

  29. Marino K, Bones J, Kattla JJ, Rudd PM . A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 2010; 6: 713–723.

    Article  CAS  PubMed  Google Scholar 

  30. Chiodelli P, Mitola S, Ravelli C, Oreste P, Rusnati M, Presta M . Heparan sulfate proteoglycans mediate the angiogenic activity of the vascular endothelial growth factor receptor-2 agonist gremlin. Arterioscler Thromb Vasc Biol 2011; 31: e116–e127.

    Article  CAS  PubMed  Google Scholar 

  31. Ravelli C, Mitola S, Corsini M, Presta M . Involvement of alphavbeta3 integrin in gremlin-induced angiogenesis. Angiogenesis 2013; 16: 235–243.

    Article  CAS  PubMed  Google Scholar 

  32. Liu WS, Heckman CA . The sevenfold way of PKC regulation. Cell Signal 1998; 10: 529–542.

    Article  CAS  PubMed  Google Scholar 

  33. Lauder H, Frost EE, Hiley CR, Fan TP . Quantification of the repair process involved in the repair of a cell monolayer using an in vitro model of mechanical injury. Angiogenesis 1998; 2: 67–80.

    Article  CAS  PubMed  Google Scholar 

  34. Peverali FA, Mandriota SJ, Ciana P, Marelli R, Quax P, Rifkin DB et al. Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells. J Cell Physiol 1994; 161: 1–14.

    Article  CAS  PubMed  Google Scholar 

  35. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P . The human sialyltransferase family. Biochimie 2001; 83: 727–737.

    Article  CAS  PubMed  Google Scholar 

  36. Monaco L, Marc A, Eon-Duval A, Acerbis G, Distefano G, Lamotte D et al. Genetic engineering of alpha2,6-sialyltransferase in recombinant CHO cells and its effects on the sialylation of recombinant interferon-gamma. Cytotechnology 1996; 22: 197–203.

    Article  CAS  PubMed  Google Scholar 

  37. Esko JD . Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol 1991; 3: 805–816.

    Article  CAS  PubMed  Google Scholar 

  38. Rezzola S, Belleri M, Ribatti D, Costagliola C, Presta M, Semeraro F . A novel ex vivo murine retina angiogenesis (EMRA) assay. Exp Eye Res 2013; 112: 51–56.

    Article  CAS  PubMed  Google Scholar 

  39. Ribatti D . Chicken chorioallantoic membrane angiogenesis model. Methods Mol Biol 2012; 843: 47–57.

    Article  CAS  PubMed  Google Scholar 

  40. Roskoski R Jr . VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 2008; 375: 287–291.

    Article  CAS  PubMed  Google Scholar 

  41. Leppanen VM, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T et al. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci USA 2010; 107: 2425–2430.

    Article  CAS  PubMed  Google Scholar 

  42. Brozzo MS, Bjelic S, Kisko K, Schleier T, Leppanen VM, Alitalo K et al. Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood 2012; 119: 1781–1788.

    Article  CAS  PubMed  Google Scholar 

  43. Chandler KB, Leon DR, Meyer RD, Rahimi N, Costello CE . Site-specific N-glycosylation of endothelial cell receptor tyrosine kinase VEGFR-2. J Proteome Res 2017; 16: 677–688.

    Article  CAS  PubMed  Google Scholar 

  44. Lee Jr J, Chen CH, Chen YH, Huang MJ, Huang J, Hung JS et al. COSMC is overexpressed in proliferating infantile hemangioma and enhances endothelial cell growth via VEGFR2. PLoS One 2013; 8: e56211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Franklin MC, Navarro EC, Wang Y, Patel S, Singh P, Zhang Y et al. The structural basis for the function of two anti-VEGF receptor 2 antibodies. Structure 2011; 19: 1097–1107.

    Article  CAS  PubMed  Google Scholar 

  46. Cabral MG, Piteira AR, Silva Z, Ligeiro D, Brossmer R, Videira PA . Human dendritic cells contain cell surface sialyltransferase activity. Immunol Lett 2010; 131: 89–96.

    Article  CAS  PubMed  Google Scholar 

  47. Taatjes DJ, Roth J, Weinstein J, Paulson JC . Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J Biol Chem 1988; 263: 6302–6309.

    CAS  PubMed  Google Scholar 

  48. Garcia-Vallejo JJ, Van Dijk W, Van Het Hof B, Van Die I, Engelse MA, Van Hinsbergh VW et al. Activation of human endothelial cells by tumor necrosis factor-alpha results in profound changes in the expression of glycosylation-related genes. J Cell Physiol 2006; 206: 203–210.

    Article  CAS  PubMed  Google Scholar 

  49. Abe Y, Smith CW, Katkin JP, Thurmon LM, Xu X, Mendoza LH et al. Endothelial alpha 2,6-linked sialic acid inhibits VCAM-1-dependent adhesion under flow conditions. J Immunol 1999; 163: 2867–2876.

    CAS  PubMed  Google Scholar 

  50. Lee C, Liu A, Miranda-Ribera A, Hyun SW, Lillehoj EP, Cross AS et al. NEU1 sialidase regulates the sialylation state of CD31 and disrupts CD31-driven capillary-like tube formation in human lung microvascular endothelia. J Biol Chem 2014; 289: 9121–9135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doiron AL, Kirkpatrick AP, Rinker KD . TGF-beta and TNF-a affect cell surface proteoglycan and sialic acid expression on vascular endothelial cells. Biomed Sci Instrum 2004; 40: 331–336.

    CAS  PubMed  Google Scholar 

  52. Deng X, Zhang J, Liu Y, Chen L, Yu C . TNF-alpha regulates the proteolytic degradation of ST6Gal-1 and endothelial cell-cell junctions through upregulating expression of BACE1. Sci Rep 2017; 7: 40256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brambilla A, Lonati E, Milani C, Rizzo AM, Farina F, Botto L et al. Ischemic conditions and ss-secretase activation: The impact of membrane cholesterol enrichment as triggering factor in rat brain endothelial cells. Int J Biochem Cell Biol 2015; 69: 95–104.

    Article  CAS  Google Scholar 

  54. Cai J, Qi X, Kociok N, Skosyrski S, Emilio A, Ruan Q et al. beta-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med 2012; 4: 980–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Antony P, Rose M, Heidenreich A, Knuchel R, Gaisa NT, Dahl E . Epigenetic inactivation of ST6GAL1 in human bladder cancer. BMC Cancer 2014; 14: 901.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Windwarder M, Yelland T, Djordjevic S, Altmann F . Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain. Glycoconj J 2015; 33: 387–397.

    Article  PubMed  Google Scholar 

  57. Bugatti A, Giagulli C, Urbinati C, Caccuri F, Chiodelli P, Oreste P et al. Molecular interaction studies of HIV-1 matrix protein p17 and heparin: identification of the heparin-binding motif of p17 as a target for the development of multitarget antagonists. J Biol Chem 2013; 288: 1150–1161.

    Article  CAS  PubMed  Google Scholar 

  58. Stabile H, Mitola S, Moroni E, Belleri M, Nicoli S, Coltrini D et al. Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor. Blood 2007; 109: 1834–1840.

    Article  CAS  PubMed  Google Scholar 

  59. Mitola S, Moroni E, Ravelli C, Andres G, Belleri M, Presta M . Angiopoietin-1 mediates the proangiogenic activity of the bone morphogenic protein antagonist Drm. Blood 2008; 112: 1154–1157.

    Article  CAS  PubMed  Google Scholar 

  60. Urbinati C, Bugatti A, Oreste P, Zoppetti G, Waltenberger J, Mitola S et al. Chemically sulfated Escherichia coli K5 polysaccharide derivatives as extracellular HIV-1 Tat protein antagonists. FEBS Lett 2004; 568: 171–177.

    Article  CAS  PubMed  Google Scholar 

  61. Coltrini D, Di Salle E, Ronca R, Belleri M, Testini C, Presta M . Matrigel plug assay: evaluation of the angiogenic response by reverse transcription-quantitative PCR. Angiogenesis 2013; 16: 469–477.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from Ministero dell’Istruzione, Università e Ricerca (MIUR) (ex 60%) to MR and by IG 18943 and MFAG 18459 grants from Associazione Italiana per la Ricerca sul Cancro (AIRC) to MP and RR, respectively. PC and SR were supported by AIRC Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Chiodelli or M Rusnati.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiodelli, P., Rezzola, S., Urbinati, C. et al. Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene 36, 6531–6541 (2017). https://doi.org/10.1038/onc.2017.243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.243

This article is cited by

Search

Quick links