Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis

Abstract

Epidermal growth factor receptor (EGFR) signaling is a known mediator of colorectal carcinogenesis. Studies have focused on the role of EGFR signaling in epithelial cells, although the exact nature of the role of EGFR in colorectal carcinogenesis remains a topic of debate. Here, we present evidence that EGFR signaling in myeloid cells, specifically macrophages, is critical for colon tumorigenesis in the azoxymethane–dextran sodium sulfate (AOM-DSS) model of colitis-associated carcinogenesis (CAC). In a human tissue microarray, colonic macrophages demonstrated robust EGFR activation in the pre-cancerous stages of colitis and dysplasia. Utilizing the AOM-DSS model, mice with a myeloid-specific deletion of Egfr had significantly decreased tumor multiplicity and burden, protection from high-grade dysplasia and significantly reduced colitis. Intriguingly, mice with gastrointestinal epithelial cell-specific Egfr deletion demonstrated no differences in tumorigenesis in the AOM-DSS model. The alterations in tumorigenesis in myeloid-specific Egfr knockout mice were accompanied by decreased macrophage, neutrophil and T-cell infiltration. Pro-tumorigenic M2 macrophage activation was diminished in myeloid-specific Egfr-deficient mice, as marked by decreased Arg1 and Il10 mRNA expression and decreased interleukin (IL)-4, IL10 and IL-13 protein levels. Surprisingly, diminished M1 macrophage activation was also detectable, as marked by significantly reduced Nos2 and Il1b mRNA levels and decreased interferon (IFN)-γ, tumor necrosis factor (TNF)-α and IL-1β protein levels. The alterations in M1 and M2 macrophage activation were confirmed in bone marrow-derived macrophages from mice with the myeloid-specific Egfr knockout. The combined effect of restrained M1 and M2 macrophage activation resulted in decreased production of pro-angiogenic factors, CXCL1 and vascular endothelial growth factor (VEGF), and reduced CD31+ blood vessels, which likely contributed to protection from tumorigenesis. These data reveal that EGFR signaling in macrophages, but not in colonic epithelial cells, has a significant role in CAC. EGFR signaling in macrophages may prove to be an effective biomarker of CAC or target for chemoprevention in patients with inflammatory bowel disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Global Burden of Disease Cancer C Global Burden of Disease Cancer C Fitzmaurice C Global Burden of Disease Cancer C Dicker D Global Burden of Disease Cancer C Pain A Global Burden of Disease Cancer C Hamavid H Global Burden of Disease Cancer C Moradi-Lakeh M et al. The global burden of cancer 2013. JAMA Oncol 2015; 1: 505–527.

    Article  Google Scholar 

  2. Brower V . Feeding the flame: new research adds to role of inflammation in cancer development. J Natl Cancer Inst 2005; 97: 251–253.

    Article  Google Scholar 

  3. Feagins LA, Souza RF, Spechler SJ . Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 2009; 6: 297–305.

    Article  CAS  Google Scholar 

  4. Terzic J, Grivennikov S, Karin E, Karin M . Inflammation and colon cancer. Gastroenterology 2010; 138: e2105.

    Article  Google Scholar 

  5. Martinez FO, Gordon S . The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13.

    Article  Google Scholar 

  6. Mosser DM . The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209–212.

    Article  CAS  Google Scholar 

  7. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  Google Scholar 

  8. Erreni M, Mantovani A, Allavena P . Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron 2011; 4: 141–154.

    Article  CAS  Google Scholar 

  9. Isidro RA, Appleyard CB . Colonic macrophage polarization in homeostasis, inflammation, and cancer. Am J Physiol Gastrointest Liver Physiol 2016; 311: G59–G73.

    Article  Google Scholar 

  10. Anderson CF, Mosser DM . A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol 2002; 72: 101–106.

    CAS  PubMed  Google Scholar 

  11. Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J et al. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis. Cell Rep 2016; 15: 2000–2011.

    Article  CAS  Google Scholar 

  12. Norton SE, Dunn ET, McCall JL, Munro F, Kemp RA . Gut macrophage phenotype is dependent on the tumor microenvironment in colorectal cancer. Clin Transl Immunol 2016; 5: e76.

    Article  Google Scholar 

  13. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  14. Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W et al. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 2009; 15: 2248–2258.

    Article  CAS  Google Scholar 

  15. Xie W, Li M, Xu N, Lv Q, Huang N, He J et al. MiR-181a regulates inflammation responses in monocytes and macrophages. PLoS One 2013; 8: e58639.

    Article  CAS  Google Scholar 

  16. De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D et al. Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015; 34: 3493–3503.

    Article  CAS  Google Scholar 

  17. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  Google Scholar 

  18. Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagomez D, Barry DP et al. EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest 2016; 126: 3296–3312.

    Article  Google Scholar 

  19. Krasinskas AM . EGFR signaling in colorectal carcinoma. Pathol Res Int 2011; 2011: 932932.

    Article  Google Scholar 

  20. Markman B, Javier Ramos F, Capdevila J, Tabernero J . EGFR and KRAS in colorectal cancer. Adv Clin Chem 2010; 51: 71–119.

    Article  CAS  Google Scholar 

  21. Spano JP, Lagorce C, Atlan D, Milano G, Domont J, Benamouzig R et al. Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 2005; 16: 102–108.

    Article  Google Scholar 

  22. Sasaki T, Hiroki K, Yamashita Y . The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Res Int 2013; 2013: 546318.

    Article  Google Scholar 

  23. Yang JL, Qu XJ, Russell PJ, Goldstein D . Regulation of epidermal growth factor receptor in human colon cancer cell lines by interferon alpha. Gut 2004; 53: 123–129.

    Article  CAS  Google Scholar 

  24. Katz JP, Perreault N, Goldstein BG, Actman L, McNally SR, Silberg DG et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 2005; 128: 935–945.

    Article  CAS  Google Scholar 

  25. Parang B, Kaz AM, Barrett CW, Short SP, Ning W, Keating CE et al. BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis. Gut 2016; 0: 1–11.

    Google Scholar 

  26. Engstrom A, Erlandsson A, Delbro D, Wijkander J . Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol 2014; 44: 385–392.

    Article  Google Scholar 

  27. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 2011; 10: 9.

    Article  CAS  Google Scholar 

  28. West NR, McCuaig S, Franchini F, Powrie F . Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 2015; 15: 615–629.

    Article  CAS  Google Scholar 

  29. Hiemisch H, Schutz G, Kaestner KH . Transcriptional regulation in endoderm development: characterization of an enhancer controlling Hnf3g expression by transgenesis and targeted mutagenesis. EMBO J 1997; 16: 3995–4006.

    Article  CAS  Google Scholar 

  30. Holmfeldt P, Ganuza M, Marathe H, He B, Hall T, Kang G et al. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 2016; 213: 433–449.

    Article  CAS  Google Scholar 

  31. Barrett CW, Fingleton B, Williams A, Ning W, Fischer MA, Washington MK et al. MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res 2011; 71: 1302–1312.

    Article  CAS  Google Scholar 

  32. Chandrasekar B, Deobagkar-Lele M, Victor ES, Nandi D . Regulation of chemokines, CCL3 and CCL4, by interferon gamma and nitric oxide synthase 2 in mouse macrophages and during Salmonella enterica serovar typhimurium infection. J Infect Dis 2013; 207: 1556–1568.

    Article  CAS  Google Scholar 

  33. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA 2009; 106: 14978–14983.

    Article  CAS  Google Scholar 

  34. Valbuena G, Bradford W, Walker DH . Expression analysis of the T-cell-targeting chemokines CXCL9 and CXCL10 in mice and humans with endothelial infections caused by rickettsiae of the spotted fever group. Am J Pathol 2003; 163: 1357–1369.

    Article  CAS  Google Scholar 

  35. Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C et al. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun 2014; 5: 5218.

    Article  CAS  Google Scholar 

  36. Yue X, Wu L, Hu W . The regulation of leukemia inhibitory factor. Cancer Cell Microenviron 2015; 2: e877.

    PubMed  PubMed Central  Google Scholar 

  37. Huaux F, Lo ReS, Giordano G, Uwambayinema F, Devosse R, Yakoub Y et al. IL-1alpha induces CD11b(low) alveolar macrophage proliferation and maturation during granuloma formation. J Pathol 2015; 235: 698–709.

    Article  CAS  Google Scholar 

  38. Sweet MJ, Hume DA . CSF-1 as a regulator of macrophage activation and immune responses. Arch Immunol Ther Exp 2003; 51: 169–177.

    CAS  Google Scholar 

  39. Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res 2016; 76: 35–42.

    Article  CAS  Google Scholar 

  40. Wang N, Liang H, Zen K . Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5: 614.

    PubMed  PubMed Central  Google Scholar 

  41. Singh K, Chaturvedi R, Asim M, Barry DP, Lewis ND, Vitek MP et al. The apolipoprotein E-mimetic peptide COG112 inhibits the inflammatory response to Citrobacter rodentium in colonic epithelial cells by preventing NF-kappaB activation. J Biol Chem 2008; 283: 16752–16761.

    Article  CAS  Google Scholar 

  42. Hanahan D, Weinberg RA . 2000. The hallmarks of cancer. Cell 100: 57–70.

    CAS  Google Scholar 

  43. Mousa L, Salem ME, Mikhail S . Biomarkers of angiogenesis in colorectal cancer. Biomark Cancer 2015; 7: 13–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rmali KA, Puntis MC, Jiang WG . Tumour-associated angiogenesis in human colorectal cancer. Colorec Dis 2007; 9: 3–14.

    Article  CAS  Google Scholar 

  45. Hol J, Wilhelmsen L, Haraldsen G . The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J Leukoc Biol 2010; 87: 501–508.

    Article  CAS  Google Scholar 

  46. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 2003; 278: 8508–8515.

    Article  CAS  Google Scholar 

  47. Li A, Dubey S, Varney ML, Dave BJ, Singh RK . IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003; 170: 3369–3376.

    Article  CAS  Google Scholar 

  48. Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G et al. Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 2011; 128: 2038–2049.

    Article  CAS  Google Scholar 

  49. Angelo LS, Kurzrock R . Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res 2007; 13: 2825–2830.

    Article  CAS  Google Scholar 

  50. Wu WK, Llewellyn OP, Bates DO, Nicholson LB, Dick AD . IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiol 2010; 215: 796–803.

    Article  CAS  Google Scholar 

  51. Pusztaszeri MP, Seelentag W, Bosman FT . Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 2006; 54: 385–395.

    Article  CAS  Google Scholar 

  52. Chaturvedi R, Asim M, Piazuelo MB, Yan F, Barry DP, Sierra JC et al. Activation of EGFR and ErbB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 2014; 146: 1739–1751.

    Article  CAS  Google Scholar 

  53. Nicholson RI, Gee JMW, Harper ME . EGFR and cancer prognosis. Eur J Cancer 2001; 37: 9–15.

    Article  Google Scholar 

  54. Scaltriti M, Baselga J . The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006; 12: 5268–5272.

    Article  CAS  Google Scholar 

  55. Dube PE, Yan F, Punit S, Girish N, McElroy SJ, Washington MK et al. Epidermal growth factor receptor inhibits colitis-associated cancer in mice. J Clin Invest 2012; 122: 2780–2792.

    Article  CAS  Google Scholar 

  56. Kanneganti M, Mino-Kenudson M, Mizoguchi E . Animal models of colitis-associated carcinogenesis. J Biomed Biotechnol 2011; 2011: 342637.

    Article  Google Scholar 

  57. Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C . Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 2009; 4: e6026.

    Article  Google Scholar 

  58. Payne CM, Bernstein C, Bernstein H, Gerner EW, Garewal H . Reactive nitrogen species in colon carcinogenesis. Antioxid Redox Sig 1999; 1: 449–467.

    Article  CAS  Google Scholar 

  59. Hardbower DM, Asim M, Murray-Stewart T, Casero RA Jr., Verriere T, Lewis ND et al. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids 2016; 48: 2375–2388.

    Article  CAS  Google Scholar 

  60. Shibata W, Takaishi S, Muthupalani S, Pritchard DM, Whary MT, Rogers AB et al. Conditional deletion of IkappaB-kinase-beta accelerates Helicobacter-dependent gastric apoptosis, proliferation, and preneoplasia. Gastroenterology 2010; 138: 1022–1034 e1021–1010.

    Article  Google Scholar 

  61. Parang B, Barrett CW, Williams CS . AOM/DSS model of colitis-associated cancer. Met Mol Biol 2016; 1422: 297–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CD3, CD45R and CD31 staining was performed by the Vanderbilt University Medical Center Translational Pathology Shared Resource supported by NIH grant P30CA068485 and the Vanderbilt Mouse Metabolic Phenotyping Center, supported by NIH grant U24DK059637. Slide imaging and quantification was performed in the Digital Histology Shared Resource (www.mc.vanderbilt.edu/dhsr). This work was funded by NIH grants R01DK053620, R01AT004821, R01CA190612, P01CA116087 and P01CA028842 (KTW), Veterans Affairs Merit Review grant I01BX001453 (KTW), the Thomas F Frist Sr Endowment (KTW) and the Vanderbilt Center for Mucosal Inflammation and Cancer (KTW). The human TMA was supported by NIH grant P50CA095103 and the DDRC Tissue Morphology Subcore (NIH grant P30DK058404). DMH was supported by T32GM008554 and F31DK10715. LAC was supported by Veterans Affairs Career Development Award 1IK2BX002126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K T Wilson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardbower, D., Coburn, L., Asim, M. et al. EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene 36, 3807–3819 (2017). https://doi.org/10.1038/onc.2017.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.23

This article is cited by

Search

Quick links