Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells

Abstract

Half of estrogen receptor-positive breast cancers contain a subpopulation of cytokeratin 5 (CK5)-expressing cells that are therapy resistant and exhibit increased cancer stem cell (CSC) properties. We and others have demonstrated that progesterone (P4) increases CK5+ breast cancer cells. We previously discovered that retinoids block P4 induction of CK5+ cells. Here we investigated the mechanisms by which progesterone receptors (PR) and retinoic acid receptors (RAR) regulate CK5 expression and breast CSC activity. After P4 treatment, sorted CK5+ compared to CK5− cells were more tumorigenic in vivo. In vitro, P4-treated breast cancer cells formed larger mammospheres and silencing of CK5 using small hairpin RNA abolished this P4-dependent increase in mammosphere size. Retinoic acid (RA) treatment blocked the P4 increase in CK5+ cells and prevented the P4 increase in mammosphere size. Dual small interfering RNA (siRNA) silencing of RARα and RARγ reversed RA blockade of P4-induced CK5. Using promoter deletion analysis, we identified a region 1.1 kb upstream of the CK5 transcriptional start site that is necessary for P4 activation and contains a putative progesterone response element (PRE). We confirmed by chromatin immunoprecipitation that P4 recruits PR to the CK5 promoter near the −1.1 kb essential PRE, and also to a proximal region near −130 bp that contains PRE half-sites and a RA response element (RARE). RA induced loss of PR binding only at the proximal site. Interestingly, RARα was recruited to the −1.1 kb PRE and the −130 bp PRE/RARE regions with P4, but not RA alone or RA plus P4. Treatment of breast cancer xenografts in vivo with the retinoid fenretinide reduced the accumulation of CK5+ cells during estrogen depletion. This reduction, together with the inhibition of CK5+ cell expansion through RAR/PR cross talk, may explain the efficacy of retinoids in prevention of some breast cancer recurrences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  2. Osborne CK, Schiff R . Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011; 62: 233–247.

    Article  CAS  Google Scholar 

  3. Allan AL, Vantyghem SA, Tuck AB, Chambers AF . Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 2006; 26: 87–98.

    Article  CAS  Google Scholar 

  4. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F et al. A refined molecular taxonomy of breast cancer. Oncogene 2012; 31: 1196–1206.

    Article  CAS  Google Scholar 

  5. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  Google Scholar 

  6. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011; 108: 7950–7955.

    Article  CAS  Google Scholar 

  7. Iliopoulos D, Hirsch HA, Wang G, Struhl K . Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 2011; 108: 1397–1402.

    Article  CAS  Google Scholar 

  8. Osborne CK, Schiff R, Arpino G, Lee AS, Hilsenbeck VG . Endocrine responsiveness: understanding how progesterone receptor can be used to select endocrine therapy. Breast 2005; 14: 458–465.

    Article  Google Scholar 

  9. Daniel AR, Gaviglio AL, Knutson TP, Ostrander JH, D'Assoro AB, Ravindranathan P et al. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene 2015; 34: 506–515.

    Article  CAS  Google Scholar 

  10. Knutson TP, Daniel AR, Fan D, Silverstein KA, Covington KR, Fuqua SA et al. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res 2012; 14: R95.

    Article  CAS  Google Scholar 

  11. Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA et al. Progesterone receptor modulates ERalpha action in breast cancer. Nature 2015; 523: 313–317.

    Article  CAS  Google Scholar 

  12. Singhal H, Greene ME, Tarulli G, Zarnke AL, Bourgo RJ, Laine M et al. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. Sci Adv 2016; 2: e1501924.

    Article  Google Scholar 

  13. Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA . Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 2008; 105: 5774–5779.

    Article  CAS  Google Scholar 

  14. Sato T, Tran TH, Peck AR, Girondo MA, Liu C, Goodman CR et al. Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression. Oncogene 2014; 33: 2215–2224.

    Article  CAS  Google Scholar 

  15. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  Google Scholar 

  16. Axlund SD, Yoo BH, Rosen RB, Schaack J, Kabos P, Labarbera DV et al. Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer 2013; 4: 36–49.

    Article  CAS  Google Scholar 

  17. Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 2011; 128: 45–55.

    Article  CAS  Google Scholar 

  18. Knox AJ, Scaling AL, Pinto MP, Bliesner BS, Haughian JM, Abdel-Hafiz HA et al. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease. Breast Cancer Res 2014; 16: 418.

    Article  Google Scholar 

  19. Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 2013; 32: 2555–2564.

    Article  CAS  Google Scholar 

  20. Finlay-Schultz J, Cittelly DM, Hendricks P, Patel P, Kabos P, Jacobsen BM et al. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene 2015; 34: 3676–3687.

    Article  CAS  Google Scholar 

  21. Goodman CR, Sato T, Peck AR, Girondo MA, Yang N, Liu C et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene 2016; 35: 1373–1385.

    Article  CAS  Google Scholar 

  22. Yoo BH, Axlund SD, Kabos P, Reid BG, Schaack J, Sartorius CA et al. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. J Biomol Screen 2012; 17: 1211–1220.

    Article  Google Scholar 

  23. le Maire A, Alvarez S, Shankaranarayanan P, Lera AR, Bourguet W, Gronemeyer H . Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr Top Med Chem 2012; 12: 505–527.

    Article  CAS  Google Scholar 

  24. Perissi V, Rosenfeld MG . Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 2005; 6: 542–554.

    Article  CAS  Google Scholar 

  25. Gianni M, Kalac Y, Ponzanelli I, Rambaldi A, Terao M, Garattini E . Tyrosine kinase inhibitor STI571 potentiates the pharmacologic activity of retinoic acid in acute promyelocytic leukemia cells: effects on the degradation of RARalpha and PML-RARalpha. Blood 2001; 97: 3234–3243.

    Article  CAS  Google Scholar 

  26. Tang XH, Gudas LJ . Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 2011; 6: 345–364.

    Article  CAS  Google Scholar 

  27. Garattini E, Bolis M, Garattini SK, Fratelli M, Centritto F, Paroni G et al. Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat Rev 2014; 40: 739–749.

    Article  CAS  Google Scholar 

  28. Veronesi U, Mariani L, Decensi A, Formelli F, Camerini T, Miceli R et al. Fifteen-year results of a randomized phase III trial of fenretinide to prevent second breast cancer. Ann Oncol 2006; 17: 1065–1071.

    Article  CAS  Google Scholar 

  29. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS . Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 2003; 144: 4562–4574.

    Article  CAS  Google Scholar 

  30. Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev 2010; 24: 171–182.

    Article  CAS  Google Scholar 

  31. Hua S, Kittler R, White KP . Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 2009; 137: 1259–1271.

    Article  Google Scholar 

  32. Clarke CL, Graham J, Roman SD, Sutherland RL . Direct transcriptional regulation of the progesterone receptor by retinoic acid diminishes progestin responsiveness in the breast cancer cell line T-47D. J Biol Chem 1991; 266: 18969–18975.

    CAS  PubMed  Google Scholar 

  33. Clarke CL, Roman SD, Graham J, Koga M, Sutherland RL . Progesterone receptor regulation by retinoic acid in the human breast cancer cell line T-47D. J Biol Chem 1990; 265: 12694–12700.

    CAS  PubMed  Google Scholar 

  34. Reid BG, Jerjian T, Patel P, Zhou Q, Yoo BH, Kabos P et al. Live multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery. Curr Chem Genomics Transl Med 2014; 8: 27–35.

    Article  Google Scholar 

  35. Widschwendter M, Berger J, Daxenbichler G, Muller-Holzner E, Widschwendter A, Mayr A et al. Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res 1997; 57: 4158–4161.

    CAS  PubMed  Google Scholar 

  36. Lieberman BA, Bona BJ, Edwards DP, Nordeen SK . The constitution of a progesterone response element. Mol Endocrinol 1993; 7: 515–527.

    CAS  PubMed  Google Scholar 

  37. Clarke CL, Graham JD . Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes. PLoS One 2012; 7: e35859.

    Article  CAS  Google Scholar 

  38. Jho SH, Radoja N, Im MJ, Tomic-Canic M . Negative response elements in keratin genes mediate transcriptional repression and the cross-talk among nuclear receptors. J Biol Chem 2001; 276: 45914–45920.

    Article  CAS  Google Scholar 

  39. Radoja N, Diaz DV, Minars TJ, Freedberg IM, Blumenberg M, Tomic-Canic M . Specific organization of the negative response elements for retinoic acid and thyroid hormone receptors in keratin gene family. J Invest Dermatol 1997; 109: 566–572.

    Article  CAS  Google Scholar 

  40. Radoja N, Komine M, Jho SH, Blumenberg M, Tomic-Canic M . Novel mechanism of steroid action in skin through glucocorticoid receptor monomers. Mol Cell Biol 2000; 20: 4328–4339.

    Article  CAS  Google Scholar 

  41. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R . The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31: 11–24.

    Article  CAS  Google Scholar 

  42. Chung BM, Rotty JD, Coulombe PA . Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 2013; 25: 600–612.

    Article  CAS  Google Scholar 

  43. Kim S, Wong P, Coulombe PA . A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 2006; 441: 362–365.

    Article  CAS  Google Scholar 

  44. Seltmann K, Fritsch AW, Kas JA, Magin TM . Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci USA 2013; 110: 18507–18512.

    Article  CAS  Google Scholar 

  45. Toivola DM, Strnad P, Habtezion A, Omary MB . Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20: 79–91.

    Article  CAS  Google Scholar 

  46. Boudreau A, Tanner K, Wang D, Geyer FC, Reis-Filho JS, Bissell MJ . 14-3-3sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci USA 2013; 110: E3937–E3944.

    Article  CAS  Google Scholar 

  47. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ . Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155: 1639–1651.

    Article  CAS  Google Scholar 

  48. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008; 14: 1368–1376.

    Article  CAS  Google Scholar 

  49. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  Google Scholar 

  50. Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 2009a; 150: 3318–3326.

    Article  CAS  Google Scholar 

  51. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al. Progesterone induces adult mammary stem cell expansion. Nature 2010; 465: 803–807.

    Article  CAS  Google Scholar 

  52. Gudas LJ, Wagner JA . Retinoids regulate stem cell differentiation. J Cell Physiol 2011; 226: 322–330.

    Article  CAS  Google Scholar 

  53. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  CAS  Google Scholar 

  54. Roman SD, Clarke CL, Hall RE, Alexander IE, Sutherland RL . Expression and regulation of retinoic acid receptors in human breast cancer cells. Cancer Res 1992; 52: 2236–2242.

    CAS  PubMed  Google Scholar 

  55. Horwitz KB, Sartorius CA . Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab 2008; 93: 3295–3298.

    Article  CAS  Google Scholar 

  56. Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 2012; 135: 415–432.

    Article  CAS  Google Scholar 

  57. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  Google Scholar 

  58. Hu Y, Smyth GK . ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Colorado Cancer Center Flow Cytometry, Biorepository Core, and Tissue Culture Cores supported by P30CA046934 and the University of Colorado Department of Pathology Sequencing Core for their technical assistance and services. We thank Andrea Osypuk and Story Wilson for their assistance with Aperio imaging and analysis. This work was supported by grants from the Colorado Clinical and Translational Sciences Institute NIH TL1 TR001081 (LMF), National Institutes of Health grants NIH F31 CA210519 (LMF), NIH 2R01 CA140985 (CAS) and Breast Cancer Research Foundation (16-072, CAS, co-PI).

Author contributions

LMF performed most of the studies. OM performed experiments in Figure 2a and b, and Figure 5b and c. JF-S performed experiments in Table 1 and Supplementary Figure 1. SKN engineered and provided reagents for Figure 4. LMF, JF-S, DVL, SKN and CAS contributed intellectual design and interpretation of results. LMF wrote the manuscript. JF-S, SKN and CAS provided editorial assistance. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Sartorius.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fettig, L., McGinn, O., Finlay-Schultz, J. et al. Cross talk between progesterone receptors and retinoic acid receptors in regulation of cytokeratin 5-positive breast cancer cells. Oncogene 36, 6074–6084 (2017). https://doi.org/10.1038/onc.2017.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.204

This article is cited by

Search

Quick links