Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells

Abstract

Mitochondrial Ca2+ signaling, which is strongly dependent on the mitochondrial Ca2+ uniporter (MCU) complex, has a series of key roles in physiopathological processes, including energy metabolism, reactive oxygen species (ROS) production and cell apoptosis. However, a mechanistic understanding of how the mitochondrial Ca2+ signaling is remodeled and its functional roles remains greatly limited in cancers, especially in hepatocellular carcinoma. Here we demonstrated that the MCU complex was dysregulated in hepatocellular carcinoma (HCC) cells and significantly correlated with metastasis and poor prognosis of HCC patients. Upregulation of MCU clearly enhanced the Ca2+ uptake into mitochondria, which significantly promoted ROS production by downregulating nicotinamide adenine dinucleotide+ (NAD+)/reduced form of nicotinamide adenine dinucleotid (NADH) ratio and the NAD+-dependent deacetylase activity of sirtuin 3 to inhibit superoxide dismutase 2 (SOD2) activity. Moreover, our data indicated that the MCU-dependent mitochondrial Ca2+ uptake promotes matrix metalloproteinase-2 activity and cell motility by ROS-activated c-Jun N-terminal kinase pathway, and thus contributed to the increased ability of invasion and migration in vitro and intrahepatic and distal lung metastasis in vivo of HCC cells. In addition, treatment with the mitochondrial Ca2+-buffering protein parvalbumin significantly suppressed ROS production and the ability of HCC metastasis. Our study uncovers a mechanism that links the remodeling of mitochondrial Ca2+ homeostasis to ROS production, and provides evidence supporting a metastasis-promoting role for the MCU-dependent mitochondrial Ca2+ uptake in HCC. Our findings suggest that the mitochondrial Ca2+ uptake machinery may potentially be a novel therapeutic target for HCC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

HCC:

hepatocellular carcinoma

MCU:

mitochondrial calcium uniporter

MICU1,2:

mitochondrial calcium uptake 1,2

EMRE:

essential MCU regulator

MAPK:

mitogen-activated protein kinase

ROS:

reactive oxygen specie

PV:

parvalbumin

NAD:

nicotinamide adenine dinucleotide

NAM:

nicotinamide

PDH:

pyruvate dehydrogenase

IDH:

isocitrate dehydrogenase

α-KGDH:

α-ketoglutarate dehydrogenase

SOD2:

superoxide dismutase 2

SIRT3:

sirtuin 3

JNK:

c-Jun N-terminal kinase

MMP:

matrix metalloproteinase.

References

  1. Rizzuto R, De Stefani D, Raffaello A, Mammucari C . Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Bio 2012; 13: 566–578.

    Article  CAS  Google Scholar 

  2. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011; 476: 341–U111.

    Article  CAS  Google Scholar 

  3. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R . A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011; 476: 336–U104.

    Article  CAS  Google Scholar 

  4. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE et al. MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 2010; 467: 291–296.

    Article  CAS  Google Scholar 

  5. Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 2013; 8: e55785.

    Article  CAS  Google Scholar 

  6. Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 2013; 32: 2362–2376.

    Article  CAS  Google Scholar 

  7. Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 2013; 342: 1379–1382.

    Article  CAS  Google Scholar 

  8. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N, Skehel PA et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 2013; 4: 2034.

    Article  Google Scholar 

  9. McCormack JG, Halestrap AP, Denton RM . Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 1990; 70: 391–425.

    Article  CAS  Google Scholar 

  10. Hansford RG . Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 1994; 26: 495–508.

    Article  CAS  Google Scholar 

  11. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R . Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 1999; 96: 13807–13812.

    Article  CAS  Google Scholar 

  12. Ying W . NAD+ and NADH in ischemic brain injury. Front Biosci 2008; 13: 1141–1151.

    Article  CAS  Google Scholar 

  13. Adam-Vizi V, Starkov AA . Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimers Dis 2010; 20: S413–S426.

    Article  Google Scholar 

  14. Wallace DC . Mitochondria and cancer. Nat Rev Cancer 2012; 12: 685–698.

    Article  CAS  Google Scholar 

  15. Curry MC, Peters AA, Kenny PA, Roberts-Thomson SJ, Monteith GR . Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 2013; 434: 695–700.

    Article  CAS  Google Scholar 

  16. Arvizo RR, Moyano DF, Saha S, Thompson MA, Bhattacharya R, Rotello VM et al. Probing novel roles of the mitochondrial uniporter in ovarian cancer cells using nanoparticles. J Biol Chem 2013; 288: 17610–17618.

    Article  CAS  Google Scholar 

  17. Tang SH, Wang XB, Shen Q, Yang XY, Yu CH, Cai CQ et al. Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun 2015; 458: 186–193.

    Article  CAS  Google Scholar 

  18. Tosatto A, Sommaggio R, Kummerow C, Bentham RB, Blacker TS, Berecz T et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha. EMBO Mol Med 2016; 8: 569–585.

    Article  CAS  Google Scholar 

  19. Nath A, Li I, Roberts LR, Chan C . Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep 2015; 5: 14752.

    Article  CAS  Google Scholar 

  20. McCormack JG, Denton RM . The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 1979; 180: 533–544.

    Article  CAS  Google Scholar 

  21. Koch-Nolte F, Fischer S, Haag F, Ziegler M . Compartmentation of NAD(+)-dependent signalling. FEBS Lett 2011; 585: 1651–1656.

    Article  CAS  Google Scholar 

  22. Xu P, Sauve AA . Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mech Ageing Dev 2010; 131: 287–298.

    Article  CAS  Google Scholar 

  23. Wagner EF, Nebreda AR . Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9: 537–549.

    Article  CAS  Google Scholar 

  24. Min L, He B, Hui L . Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin Cancer Biol 2011; 21: 10–20.

    Article  CAS  Google Scholar 

  25. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K . JNK phosphorylates paxillin and regulates cell migration. Nature 2003; 424: 219–223.

    Article  CAS  Google Scholar 

  26. Zeng X, Lin Y, Yin C, Zhang X, Ning BF, Zhang Q et al. Recombinant adenovirus carrying the hepatocyte nuclear factor-1alpha gene inhibits hepatocellular carcinoma xenograft growth in mice. Hepatology 2011; 54: 2036–2047.

    Article  CAS  Google Scholar 

  27. Son G, Hirano T, Seki E, Iimuro Y, Nukiwa T, Matsumoto K et al. Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. J Hepatol 2006; 45: 688–695.

    Article  CAS  Google Scholar 

  28. Campanella M, Pinton P, Rizzuto R . Mitochondrial Ca2+ homeostasis in health and disease. Biol Res 2004; 37: 653–660.

    Article  Google Scholar 

  29. Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 2013; 23: 58–63.

    Article  CAS  Google Scholar 

  30. Hall DD, Wu YJ, Domann FE, Spitz DR, Anderson ME . Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival. PLoS ONE 2014; 9: e96866.

    Article  Google Scholar 

  31. Chaudhari S, Wang YX, Wu PW, Yuan J, Ma R . Positive regulation of STIM1/Orai1-mediated store operated calcium entry by reactive oxygen species in human mesangial cells. FASEB J 2014; 28: LB731.

    Google Scholar 

  32. Sun YY, Chauhan A, Sukumaran P, Sharma J, Singh BB, Mishra BB . Inhibition of store-operated calcium entry in microglia by helminth factors: implications for immune suppression in neurocysticercosis. J Neuroinflammation 2014; 11: 210.

    Article  Google Scholar 

  33. Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW, Yin PH et al. Mitochondrial dysfunction represses HIF-1alpha protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochim Biophys Acta 2013; 1830: 4743–4751.

    Article  CAS  Google Scholar 

  34. Yu TZ, Sheu SS, Robotham JL, Yoon YS . Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 2008; 79: 341–351.

    Article  CAS  Google Scholar 

  35. Chen YH, Zhang JY, Lin Y, Lei QY, Guan KL, Zhao SM et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 2011; 12: 534–541.

    Article  CAS  Google Scholar 

  36. Asimakis GK, Lick S, Patterson C . Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts. Circulation 2002; 105: 981–986.

    Article  CAS  Google Scholar 

  37. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 1998; 106 (Suppl 1): 289–295.

    Article  CAS  Google Scholar 

  38. Storz P . Reactive oxygen species in tumor progression. Front Biosci 2005; 10: 1881–1896.

    Article  CAS  Google Scholar 

  39. Min LH, He BK, Hui LJ . Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin Cancer Biol 2011; 21: 10–20.

    Article  CAS  Google Scholar 

  40. Zhang Z, Miao L, Lv C, Sun H, Wei S, Wang B et al. Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 2013; 4: e657.

    Article  CAS  Google Scholar 

  41. Chiba T, Suzuki E, Yuki K, Zen Y, Oshima M, Miyagi S et al. Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and -independent manners. PLoS One 2014; 9: e84807.

    Article  Google Scholar 

  42. Kermorgant S, Zicha D, Parker PJ . PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J 2004; 23: 3721–3734.

    Article  CAS  Google Scholar 

  43. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120: 649–661.

    Article  CAS  Google Scholar 

  44. Wu WS . The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006; 25: 695–705.

    Article  CAS  Google Scholar 

  45. Ke Z, Lin H, Fan Z, Cai TQ, Kaplan RA, Ma C et al. MMP-2 mediates ethanol-induced invasion of mammary epithelial cells over-expressing ErbB2. Int J Cancer 2006; 119: 8–16.

    Article  CAS  Google Scholar 

  46. Huang QC, Zhan L, Cao HY, Li JB, Lyu YH, Guo X et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy 2016; 12: 999–1014.

    Article  CAS  Google Scholar 

  47. Hinman LM, Blass JP . An NADH-linked spectrophotometric assay for pyruvate dehydrogenase complex in crude tissue homogenates. J Biol Chem 1981; 256: 6583–6586.

    CAS  PubMed  Google Scholar 

  48. McCormack JG . Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem J 1985; 231: 581–595.

    Article  CAS  Google Scholar 

  49. Humphries KM, Szweda LI . Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 1998; 37: 15835–15841.

    Article  CAS  Google Scholar 

  50. Trerotola M, Jernigan DL, Liu Q, Siddiqui J, Fatatis A, Languino LR . Trop-2 promotes prostate cancer metastasis by modulating beta(1) integrin functions. Cancer Res 2013; 73: 3155–3167.

    Article  CAS  Google Scholar 

  51. Hakanpaa L, Sipila T, Leppanen VM, Gautam P, Nurmi H, Jacquemet G et al. Endothelial destabilization by angiopoietin-2 via integrin beta1 activation. Nat Commun 2015; 6: 5962.

    Article  CAS  Google Scholar 

  52. Wagenblast E, Soto M, Gutierrez-Angel S, Hartl CA, Gable AL, Maceli AR et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 2015; 520: 358–362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 81572727 and 81320108021) and National Basic Research Program (grant 2015CB553703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Xing.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, T., Zhang, H., Wang, J. et al. MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene 36, 5897–5909 (2017). https://doi.org/10.1038/onc.2017.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.167

This article is cited by

Search

Quick links