Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation

Abstract

The MAPK pathway is activated in the majority of melanomas and is the target of therapeutic approaches. Under normal conditions, it initiates the so-called immediate early response, which encompasses the transient transcription of several genes belonging to the AP-1 transcription factor family. Under pathological conditions, such as continuous MAPK pathway overactivation due to oncogenic alterations occurring in melanoma, these genes are constitutively expressed. The consequences of a permanent expression of these genes are largely unknown. Here, we show that FOSL1 is the main immediate early AP-1 member induced by melanoma oncogenes. We first examined its role in established melanoma cells. We found that FOSL1 is involved in melanoma cell migration as well as cell proliferation and anoikis-independent growth, which is mediated by the gene product of its target gene HMGA1, encoding a multipotent chromatin modifier. As FOSL1 expression is increased in patient melanoma samples compared to nevi, we investigated the effect of enhanced FOSL1 expression on melanocytes. Intriguingly, we found that FOSL1 acts oncogenic and transforms melanocytes, enabling subcutaneous tumor growth in vivo. During the process of transformation, FOSL1 reprogrammed the melanocytes and downregulated MITF in a HMGA1-dependent manner. At the same time, AXL was upregulated, leading to a shift in the MITF/AXL balance. Furthermore, FOSL1 re-enforced pro-tumorigenic transcription factors MYC, E2F3 and AP-1. Together, this led to the enhancement of several growth-promoting processes, such as ribosome biogenesis, cellular detachment and pyrimidine metabolism. Overall, we demonstrate that FOSL1 is a novel reprogramming factor for melanocytes with potent tumor transformation potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mandal R, Becker S, Strebhardt K . Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene 2016; 35: 2547–2561.

    Article  CAS  Google Scholar 

  2. Vogt PK . Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer 2002; 2: 465–469.

    Article  CAS  Google Scholar 

  3. Lopez-Bergami P, Kim H, Dewing A, Goydos J, Aaronson S, Ronai Z . c-Jun regulates phosphoinositide-dependent kinase 1 transcription: implication for Akt and protein kinase C activities and melanoma tumorigenesis. J Biol Chem 2010; 285: 903–913.

    Article  CAS  Google Scholar 

  4. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun 2015; 6: 8755.

    Article  CAS  Google Scholar 

  5. Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK . MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 2013; 32: 2984–2991.

    Article  CAS  Google Scholar 

  6. Spangler B, Vardimon L, Bosserhoff AK, Kuphal S . Post-transcriptional regulation controlled by E-cadherin is important for c-Jun activity in melanoma. Pigment Cell Melanoma Res 2011; 24: 148–164.

    Article  CAS  Google Scholar 

  7. Spangler B, Kappelmann M, Schittek B, Meierjohann S, Vardimon L, Bosserhoff AK et al. ETS-1/RhoC signaling regulates the transcription factor c-Jun in melanoma. Int J Cancer 2012; 130: 2801–2811.

    Article  CAS  Google Scholar 

  8. Cohen DR, Curran T . fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol Cell Biol 1988; 8: 2063–2069.

    Article  CAS  Google Scholar 

  9. Nishina H, Sato H, Suzuki T, Sato M, Iba H . Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci USA 1990; 87: 3619–3623.

    Article  CAS  Google Scholar 

  10. Tice DA, Soloviev I, Polakis P . Activation of the Wnt pathway interferes with serum response element-driven transcription of immediate early genes. J Biol Chem 2002; 277: 6118–6123.

    Article  CAS  Google Scholar 

  11. Chinenov Y, Kerppola TK . Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438–2452.

    Article  CAS  Google Scholar 

  12. Shaulian E, Schreiber M, Piu F, Beeche M, Wagner EF, Karin M . The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 2000; 103: 897–907.

    Article  CAS  Google Scholar 

  13. Ting CH, Chen YC, Wu CJ, Chen JY . Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 2016; 7: 40329–40347.

    PubMed  PubMed Central  Google Scholar 

  14. Nakabeppu Y, Oda S, Sekiguchi M . Proliferative activation of quiescent Rat-1A cells by delta FosB. Mol Cell Biol 1993; 13: 4157–4166.

    Article  CAS  Google Scholar 

  15. Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH et al. c-fos is required for malignant progression of skin tumors. Cell 1995; 82: 721–732.

    Article  CAS  Google Scholar 

  16. Desmet CJ, Gallenne T, Prieur A, Reyal F, Visser NL, Wittner BS et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci USA 2013; 110: 5139–5144.

    Article  CAS  Google Scholar 

  17. Iskit S, Schlicker A, Wessels L . Peeper DS. Fra-1 is a key driver of colon cancer metastasis and a Fra-1 classifier predicts disease-free survival. Oncotarget 2015; 6: 43146–43161.

    Article  Google Scholar 

  18. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 2013; 32: 4294–4303.

    Article  CAS  Google Scholar 

  19. Renaud SJ, Kubota K, Rumi MA, Soares MJ . The FOS transcription factor family differentially controls trophoblast migration and invasion. J Biol Chem 2014; 289: 5025–5039.

    Article  CAS  Google Scholar 

  20. Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M . Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol Cell Biol 2007; 27: 3936–3950.

    Article  CAS  Google Scholar 

  21. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    Article  CAS  Google Scholar 

  22. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A et al. The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med 2015; 373: 1926–1936.

    Article  Google Scholar 

  23. Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 2012; 26: 1055–1069.

    Article  CAS  Google Scholar 

  24. Widmer DS, Cheng PF, Eichhoff OM, Belloni BC, Zipser MC, Schlegel NC et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res 2012; 25: 343–353.

    Article  CAS  Google Scholar 

  25. Vincek V, Xu S, Fan YS . Comparative genome hybridization analysis of laser-capture microdissected in situ melanoma. J Cutan Pathol 2010; 37: 3–7.

    Article  Google Scholar 

  26. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490: 412–416.

    Article  CAS  Google Scholar 

  27. Leikam C, Hufnagel AL, Otto C, Murphy DJ, Muhling B, Kneitz S et al. In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells. Cell Death Dis 2015; 6: e1711.

    Article  CAS  Google Scholar 

  28. Thomas S, Thomas M, Wincker P, Babarit C, Xu P, Speer MC et al. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet 2008; 17: 3411–3425.

    Article  CAS  Google Scholar 

  29. Belton A, Gabrovsky A, Bae YK, Reeves R, Iacobuzio-Donahue C, Huso DL et al. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS One 2012; 7: e30034.

    Article  CAS  Google Scholar 

  30. Shah SN, Kerr C, Cope L, Zambidis E, Liu C, Hillion J et al. HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks. PLoS One 2012; 7: e48533.

    Article  CAS  Google Scholar 

  31. Muller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 2014; 5: 5712.

    Article  Google Scholar 

  32. Martin RM, Tunnemann G, Leonhardt H, Cardoso MC . Nucleolar marker for living cells. Histochem Cell Biol 2007; 127: 243–251.

    Article  CAS  Google Scholar 

  33. Gentilella A, Kozma SC, Thomas G . A liaison between mTOR signaling, ribosome biogenesis and cancer. Biochim Biophys Acta 2015; 1849: 812–820.

    Article  CAS  Google Scholar 

  34. Elkon R, Loayza-Puch F, Korkmaz G, Lopes R, van Breugel PC, Bleijerveld OB et al. Myc coordinates transcription and translation to enhance transformation and suppress invasiveness. EMBO Rep 2015; 16: 1723–1736.

    Article  CAS  Google Scholar 

  35. Das KC, Muniyappa H . c-Jun-NH2 terminal kinase (JNK)-mediates AP-1 activation by thioredoxin: phosphorylation of cJun, JunB, and Fra-1. Mol Cell Biochem 2010; 337: 53–63.

    Article  CAS  Google Scholar 

  36. Wellbrock C, Arozarena I . Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res 2015; 28: 390–406.

    Article  CAS  Google Scholar 

  37. Bianchi-Smiraglia A, Bagati A, Fink EE, Moparthy S, Wawrzyniak JA, Marvin EK et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene 2016; 36: 84–96.

    Article  Google Scholar 

  38. Lister JA, Capper A, Zeng Z, Mathers ME, Richardson J, Paranthaman K et al. A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression in vivo. J Invest Dermatol 2014; 134: 133–140.

    Article  CAS  Google Scholar 

  39. Ploper D, Taelman VF, Robert L, Perez BS, Titz B, Chen HW et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci USA 2015; 112: E420–E429.

    Article  CAS  Google Scholar 

  40. Sensi M, Catani M, Castellano G, Nicolini G, Alciato F, Tragni G et al. Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. J Invest Dermatol 2011; 131: 2448–2457.

    Article  CAS  Google Scholar 

  41. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016; 352: 189–196.

    Article  CAS  Google Scholar 

  42. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 2002; 16: 245–256.

    Article  CAS  Google Scholar 

  43. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 2014; 158: 185–197.

    Article  CAS  Google Scholar 

  44. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015; 17: 1218–1227.

    Article  CAS  Google Scholar 

  45. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Melanoma Research Network of the Deutsche Krebshilfe eV (German Cancer Aid) and by the research unit FOR2314, project 5 (German Research Foundation). We are furthermore grateful to Manfred Gessler (Dept of Developmental Biochemistry, University of Würzburg) for providing us with the pSB-ET-iE vector and to Stefan Gaubatz (Dept. of Physiological Chemistry, University of Würzburg) for the E2F3 antibody. We would also like to thank Marie-Christine Dabauvalle (Dept of Zoology and Developmental Biology, University of Würzburg) for sharing the fibrillarin antibody with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Meierjohann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurus, K., Hufnagel, A., Geiger, F. et al. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation. Oncogene 36, 5110–5121 (2017). https://doi.org/10.1038/onc.2017.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.135

This article is cited by

Search

Quick links