Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An ultra-deep sequencing strategy to detect sub-clonal TP53 mutations in presentation chronic lymphocytic leukaemia cases using multiple polymerases

Abstract

Chronic lymphocytic leukaemia (CLL) is the most common clonal B-cell disorder characterized by clonal diversity, a relapsing and remitting course, and in its aggressive forms remains largely incurable. Current front-line regimes include agents such as fludarabine, which act primarily via the DNA damage response pathway. Key to this is the transcription factor p53. Mutations in the TP53 gene, altering p53 functionality, are associated with genetic instability, and are present in aggressive CLL. Furthermore, the emergence of clonal TP53 mutations in relapsed CLL, refractory to DNA-damaging therapy, suggests that accurate detection of sub-clonal TP53 mutations prior to and during treatment may be indicative of early relapse. In this study, we describe a novel deep sequencing workflow using multiple polymerases to generate sequencing libraries (MuPol-Seq), facilitating accurate detection of TP53 mutations at a frequency as low as 0.3%, in presentation CLL cases tested. As these mutations were mostly clustered within the regions of TP53 encoding DNA-binding domains, essential for DNA contact and structural architecture, they are likely to be of prognostic relevance in disease progression. The workflow described here has the potential to be implemented routinely to identify rare mutations across a range of diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 2012; 120: 4191–4196.

    Article  CAS  PubMed  Google Scholar 

  4. Ojha J, Ayres J, Secreto C, Tschumper R, Rabe K, Van Dyke D et al. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood 2014; 125: 492–498.

    Article  PubMed  Google Scholar 

  5. Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci USA 2008; 105: 13081–13086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Khiabanian H, Rossi D, Fabbri G, Gattei V, Forconi F et al. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. Elife 2014; 3 doi:10.7554/eLife.02869.

  7. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D et al. TP53 Mutation and Survival in Chronic Lymphocytic Leukemia. J Clin Oncol 2010; 28: 4473–4479.

    Article  PubMed  Google Scholar 

  9. Zenz T, Benner A, Dohner H, Stilgenbauer S . Chronic lymphocytic leukemia and treatment resistance in cancer: the role of the p53 pathway. Cell Cycle 2008; 7: 3810–3814.

    Article  CAS  PubMed  Google Scholar 

  10. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589.

    CAS  PubMed  Google Scholar 

  11. Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23: 117–124.

    Article  CAS  PubMed  Google Scholar 

  12. Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114: 2589–2597.

    Article  CAS  PubMed  Google Scholar 

  13. Delgado J, Espinet B, Oliveira AC, Abrisqueta P, de la Serna J, Collado R et al. Chronic lymphocytic leukaemia with 17p deletion: a retrospective analysis of prognostic factors and therapy results. Br J Haematol 2012; 157: 67–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wawrzyniak E, Kotkowska A, Blonski JZ, Siemieniuk-Rys M, Ziolkowska E, Giannopoulos K et al. Clonal evolution in CLL patients as detected by FISH versus chromosome banding analysis, and its clinical significance. Eur J Haematol 2014; 92: 91–101.

    Article  PubMed  Google Scholar 

  15. Malcikova J, Stano-Kozubik K, Tichy B, Kantorova B, Pavlova S, Tom N et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2014; 29: 877–885.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014; 123: 2139–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balint EE, Vousden KH . Activation and activities of the p53 tumour suppressor protein. Br J Cancer 2001; 85: 1813–1823.

    Article  CAS  PubMed Central  Google Scholar 

  18. Tian K, Rajendran R, Doddananjaiah M, Krstic-Demonacos M, Schwartz JM . Dynamics of DNA damage induced pathways to cancer. PloS One 2013; 8: e72303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knudson AG Jr . Overview: genes that predispose to cancer. Mutat Res 1991; 247: 185–190.

    Article  PubMed  Google Scholar 

  20. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008; 456: 53–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  22. Olivier M, Petitjean A, Marcel V, Petre A, Mounawar M, Plymoth A et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther 2009; 16: 1–12.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol 2011; 29: 2223–2229.

    Article  PubMed  Google Scholar 

  24. Jethwa A, Hullein J, Stolz T, Blume C, Sellner L, Jauch A et al. Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia. Br J Haematol 2013; 163: 496–500.

    Article  CAS  PubMed  Google Scholar 

  25. Gravanis I, Ersboll J, Skovlund E, Abadie E, Marty M, Pignatti F . The European Medicines Agency review of ofatumumab (Arzerra(R)) for the treatment of chronic lymphocytic leukemia in patients refractory to fludarabine and alemtuzumab: summary of the scientific assessment of the European medicines agency committee for medicinal products for human use. Oncologist 2010; 15: 1335–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J et al. Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 2004; 103: 3278–3281.

    Article  CAS  PubMed  Google Scholar 

  27. Stilgenbauer S, Zenz T, Winkler D, Buhler A, Schlenk RF, Groner S et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009; 27: 3994–4001.

    Article  CAS  PubMed  Google Scholar 

  28. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014; 370: 997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med 2014; 370: 2286–2294.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Komarova NL, Burger JA, Wodarz D . Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA 2014; 111: 13906–13911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 2007; 104: 12129–12134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487–491.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura S, Nakaya T, Iida T . Metagenomic analysis of bacterial infections by means of high-throughput DNA sequencing. Exp Biol Med (Maywood) 2011; 236: 968–971.

    Article  CAS  Google Scholar 

  34. McInerney P, Adams P, Hadi MZ . Error rate comparison during polymerase chain reaction by DNA polymerase. Mol Biol Int 2014; 2014: 287430.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huggett JF, Cowen S, Foy CA . Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem 2015; 61: 79–88.

    Article  CAS  PubMed  Google Scholar 

  36. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2015; 518: 552–555.

    Article  CAS  PubMed  Google Scholar 

  37. Chang-Hao Tsao S, Weiss J, Hudson C, Christophi C, Cebon J, Behren A et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep 2015; 5: 11198.

    Article  CAS  PubMed Central  Google Scholar 

  38. Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood 2015; 125: 516–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goh AM, Coffill CR, Lane DP . The role of mutant p53 in human cancer. J Pathol 2011; 223: 116–126.

    Article  CAS  PubMed  Google Scholar 

  40. Use CfMPfH, www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/003843/WC500170181.pdf2014.

  41. Use CfMPfH, www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/003791/WC500170191.pdf2014.

  42. Joerger AC, Fersht AR . Structural biology of the tumor suppressor p53. Annu Rev Biochem 2008; 77: 557–582.

    Article  CAS  PubMed  Google Scholar 

  43. Joerger AC, Fersht AR . The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2: a000919.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mohr J, Helfrich H, Fuge M, Eldering E, Buhler A, Winkler D et al. DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood 2011; 117: 1622–1632.

    Article  CAS  PubMed  Google Scholar 

  45. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  46. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM . Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007; 8: R143.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L et al. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 2012; 28: 2059–2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4: 136ra168.

    Article  Google Scholar 

  51. Benjamini Y, Hochberg Y . Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995; 57: 289–300.

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Kay Kendall Leukaemia Fund (www.kklf.org.uk). We would also like to thank the staff in the Haematological Malignancy Diagnostic Services Unit at Leeds Teaching Hospital who provided information on diagnostic patient data and samples for the study, and the sequencing facility at the University of Leeds who provided a technical service running the Illumina next-generation sequencing systems.

Author contributions

LW prepared the manuscript and performed the validation experiments. PB, MAC and LH carried out the bioinformatics, and PB and LH co-wrote the bioinformatics sections. AV and TM obtained and prepared patient samples. PAE performed mutational analysis of IGHV and SJO carried out FISH cytogenetic analysis. AR performed flow analysis and assisted in study design. RMT helped design the study and reviewed the article. PH and DJN conceived and designed the study, and DJN wrote part of the manuscript and carried out the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Newton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worrillow, L., Baskaran, P., Care, M. et al. An ultra-deep sequencing strategy to detect sub-clonal TP53 mutations in presentation chronic lymphocytic leukaemia cases using multiple polymerases. Oncogene 35, 5328–5336 (2016). https://doi.org/10.1038/onc.2016.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.73

This article is cited by

Search

Quick links