Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas

Abstract

TTF-1, also known as NKX2-1, is a transcription factor that has indispensable roles in both lung development and physiology. We and others have reported that TTF-1 frequently exhibits high expression with increased copy number in lung adenocarcinomas, and also has a role as a lineage-survival oncogene through transcriptional activation of crucial target genes including ROR1 and LMO3. In the present study, we employed a global proteomic search for proteins that interact with TTF-1 in order to provide a more comprehensive picture of this still enigmatic lineage-survival oncogene. Our results unexpectedly revealed a function independent of its transcriptional activity, as TTF-1 was found to interact with DDB1 and block its binding to CHK1, which in turn attenuated ubiquitylation and subsequent degradation of CHK1. Furthermore, TTF-1 overexpression conferred resistance to cellular conditions under DNA replication stress (RS) and prevented an increase in consequential DNA double-strand breaks, as reflected by attenuated induction of pCHK2 and γH2AX. Our findings suggest that the novel non-transcriptional function of TTF-1 identified in this study may contribute to lung adenocarcinoma development by conferring tolerance to DNA RS, which is known to be inherently elicited by activation of various oncogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989; 246: 491–494.

    Article  CAS  Google Scholar 

  3. Bartkova J, Horejsi Z, Sehested M, Nesland JM, Rajpert-De Meyts E, Skakkebaek NE et al. DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene 2007; 26: 7414–7422.

    Article  CAS  Google Scholar 

  4. Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL et al. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 2007; 13: 832–838.

    Article  CAS  Google Scholar 

  5. Osada H, Tatematsu Y, Yatabe Y, Nakagawa T, Konishi H, Harano T et al. Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene 2002; 21: 2418–2424.

    Article  CAS  Google Scholar 

  6. Mizuno K, Osada H, Konishi H, Tatematsu Y, Yatabe Y, Mitsudomi T et al. Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 2002; 21: 2328–2333.

    Article  CAS  Google Scholar 

  7. Hills SA, Diffley JF . DNA replication and oncogene-induced replicative stress. Curr Biol 2014; 24: R435–R444.

    Article  CAS  Google Scholar 

  8. Zeman MK, Cimprich KA . Causes and consequences of replication stress. Nat Cell Biol 2014; 16: 2–9.

    Article  CAS  Google Scholar 

  9. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  Google Scholar 

  10. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  Google Scholar 

  11. Gaillard H, Garcia-Muse T, Aguilera A . Replication stress and cancer. Nat Rev Cancer 2015; 15: 276–289.

    Article  CAS  Google Scholar 

  12. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996; 10: 60–69.

    Article  CAS  Google Scholar 

  13. Yatabe Y, Mitsudomi T, Takahashi T . TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol 2002; 26: 767–773.

    Article  Google Scholar 

  14. Takeuchi T, Tomida S, Yatabe Y, Kosaka T, Osada H, Yanagisawa K et al. Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J Clin Oncol 2006; 24: 1679–1688.

    Article  CAS  Google Scholar 

  15. Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res 2007; 67: 6007–6011.

    Article  CAS  Google Scholar 

  16. Yamaguchi T, Hosono Y, Yanagisawa K, Takahashi T . NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 2013; 23: 718–723.

    Article  CAS  Google Scholar 

  17. Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 2007; 104: 16663–16668.

    Article  CAS  Google Scholar 

  18. Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 2008; 27: 3635–3640.

    Article  CAS  Google Scholar 

  19. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007; 450: 893–898.

    Article  CAS  Google Scholar 

  20. Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C et al. NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell 2012; 21: 348–361.

    Article  CAS  Google Scholar 

  21. Watanabe H, Francis JM, Woo MS, Etemad B, Lin W, Fries DF et al. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target. Genes Dev 2013; 27: 197–210.

    Article  CAS  Google Scholar 

  22. Hosono Y, Yamaguchi T, Mizutani E, Yanagisawa K, Arima C, Tomida S et al. MYBPH, a transcriptional target of TTF-1, inhibits ROCK1, and reduces cell motility and metastasis. EMBO J 2012; 31: 481–493.

    Article  CAS  Google Scholar 

  23. Isogaya K, Koinuma D, Tsutsumi S, Saito RA, Miyazawa K, Aburatani H et al. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Res 2014; 24: 994–1008.

    Article  CAS  Google Scholar 

  24. Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski ML et al. Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J Clin Invest 2012; 122: 4388–4400.

    Article  CAS  Google Scholar 

  25. Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, Wang DG et al. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol Cell 2013; 50: 185–199.

    Article  CAS  Google Scholar 

  26. Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med 2015; 21: 407–413.

    Article  CAS  Google Scholar 

  27. Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 2005; 19: 607–618.

    Article  CAS  Google Scholar 

  28. Leung-Pineda V, Huh J, Piwnica-Worms H . DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 2009; 69: 2630–2637.

    Article  CAS  Google Scholar 

  29. Bartek J, Lukas C, Lukas J . Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 2004; 5: 792–804.

    Article  CAS  Google Scholar 

  30. Meuth M . Chk1 suppressed cell death. Cell Div 2010; 5: 21.

    Article  Google Scholar 

  31. Lopez-Contreras AJ, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O . An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J Exp Med 2012; 209: 455–461.

    Article  CAS  Google Scholar 

  32. Cardnell RJ, Behrens C, Diao L, Fan Y, Tang X, Tong P et al. An integrated molecular analysis of lung adenocarcinomas identifies potential therapeutic targets among TTF1-negative tumors, including DNA repair proteins and Nrf2. Clin Cancer Res 2015; 21: 3480–3491.

    Article  CAS  Google Scholar 

  33. Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K et al. The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas. Cancer Res 2007; 67: 6574–6581.

    Article  CAS  Google Scholar 

  34. Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW . Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol 2006; 26: 3319–3326.

    Article  CAS  Google Scholar 

  35. Maeda Y, Hunter TC, Loudy DE, Dave V, Schreiber V, Whitsett JA . PARP-2 interacts with TTF-1 and regulates expression of surfactant protein-B. J Biol Chem 2006; 281: 9600–9606.

    Article  CAS  Google Scholar 

  36. Tell G, Pines A, Paron I, D'Elia A, Bisca A, Kelley MR et al. Redox effector factor-1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the N transcriptional activation domain. J Biol Chem 2002; 277: 14564–14574.

    Article  CAS  Google Scholar 

  37. Missero C, Pirro MT, Simeone S, Pischetola M, Di Lauro R . The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J Biol Chem 2001; 276: 33569–33575.

    Article  CAS  Google Scholar 

  38. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  39. Huang da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  40. Kamitani T, Kito K, Nguyen HP, Yeh ET . Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 1997; 272: 28557–28562.

    Article  CAS  Google Scholar 

  41. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun 2016; 7: 10060.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS) and by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Zhuoran Liu was supported by a fellowship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Takahashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yanagisawa, K., Griesing, S. et al. TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas. Oncogene 36, 3740–3748 (2017). https://doi.org/10.1038/onc.2016.524

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.524

This article is cited by

Search

Quick links