Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The PTPROt tyrosine phosphatase functions as an obligate haploinsufficient tumor suppressor in vivo in B-cell chronic lymphocytic leukemia

Abstract

The tyrosine phosphatase PTPROt is a suggested tumor suppressor (TS) in B-cell chronic lymphocytic leukemia (CLL), and its expression is reduced in this disease. In order to examine how reduced PTPROt expression affects CLL in vivo we induced CLL in PTPROt-targeted mice. Unexpectedly, loss of both Ptprot alleles delayed disease detection and progression and lengthened survival relative to mice carrying two intact alleles, indicating that PTPROt fulfills a novel tumor-promoting role in CLL. Tumor cells from mice lacking PTPROt exhibited reduced B-cell receptor (BCR)-induced signaling, as well as increased apoptosis and autophagy. Inhibition of BCR/Src signaling in CLL cells induced their apoptosis, indicating that these findings are linked causally. These results suggest a cell-autonomous mechanism for the weakened CLL phenotype of PTPROt-deficient mice and uncover non-redundant roles for PTPROt in support of BCR signaling and survival of CLL cells. In contrast, loss of only one Ptprot allele induced earlier detection and progression of CLL and reduced survival, consistent with a tumor-suppressing role for PTPROt. Tumor cells from mice lacking one or both Ptprot allele exhibited increased interleukin-10 (IL-10) expression and signaling, factors known to support CLL; cells lacking one Ptprot alleles exhibited normal BCR signaling and cell death rates. We conclude that loss of one Ptprot allele promotes CLL, most likely by activating IL-10 signaling. Loss of both Ptprot alleles also reduces BCR signaling and increases cell death rates, offsetting the IL-10 effects and reducing the severity of the disease. PTPROt thus functions as an obligate haploinsufficient TS in CLL, where its expression levels determine its role as a promoter or inhibitor of the tumorigenic process in mice. Partial loss of PTPROt generates the strongest disease phenotype, suggesting that its intermediate expression levels in CLL are selected for.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zanesi N, Balatti V, Bottoni A, Croce CM, Pekarsky Y . Novel insights in molecular mechanisms of CLL. Curr Pharm Des 2012; 18: 3363–3372.

    Article  CAS  PubMed  Google Scholar 

  2. Burger JA, Chiorazzi N . B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34: 592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  4. Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004; 363: 105–111.

    Article  CAS  PubMed  Google Scholar 

  5. Aguiar RC, Yakushijin Y, Kharbanda S, Tiwari S, Freeman GJ, Shipp MA . PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood 1999; 94: 2403–2413.

    CAS  PubMed  Google Scholar 

  6. Pixley FJ, Lee PS, Dominguez MG, Einstein DB, Stanley ER . A heteromorphic protein-tyrosine phosphatase, PTP phi, is regulated by CSF-1 in macrophages. J Biol Chem 1995; 270: 27339–27347.

    Article  CAS  PubMed  Google Scholar 

  7. Wu LW, Baylink DJ, Lau KH . Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase. Biochem J 1996; 316: 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiggins RC, Wiggins JE, Goyal M, Wharram BL, Thomas PE . Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics 1995; 27: 174–181.

    Article  CAS  PubMed  Google Scholar 

  9. Amoui M, Baylink DJ, Tillman JB, Lau KH . Expression of a structurally unique osteoclastic protein-tyrosine phosphatase is driven by an alternative intronic, cell type-specific promoter. J Biol Chem 2003; 278: 44273–44280.

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Juszczynski P, Takeyama K, Aguiar RC, Shipp MA . Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood 2006; 108: 3428–3433.

    Article  CAS  PubMed  Google Scholar 

  11. Motiwala T, Majumder S, Kutay H, Smith DS, Neuberg DS, Lucas DM et al. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res 2007; 13: 3174–3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Motiwala T, Majumder S, Ghoshal K, Kutay H, Datta J, Roy S et al. PTPROt inactivates the oncogenic fusion protein BCR/ABL and suppresses transformation of K562 cells. J Biol Chem 2009; 284: 455–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Motiwala T, Datta J, Kutay H, Roy S, Jacob ST . Lyn kinase and ZAP70 are substrates of PTPROt in B-cells: Lyn inactivation by PTPROt sensitizes leukemia cells to VEGF-R inhibitor pazopanib. J Cell Biochem 2010; 110: 846–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Motiwala T, Kutay H, Zanesi N, Frissora FW, Mo X, Muthusamy N et al. PTPROt-mediated regulation of p53/Foxm1 suppresses leukemic phenotype in a CLL mouse model. Leukemia 2015; 29: 1350–1359.

    Article  CAS  PubMed  Google Scholar 

  15. Motiwala T, Zanesi N, Datta J, Roy S, Kutay H, Checovich AM et al. AP-1 elements and TCL1 protein regulate expression of the gene encoding protein tyrosine phosphatase PTPROt in leukemia. Blood 2011; 118: 6132–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berger AH, Knudson AG, Pandolfi PP . A continuum model for tumour suppression. Nature 2011; 476: 163–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teitell MA . The TCL1 family of oncoproteins: co-activators of transformation. Nat Rev Cancer 2005; 5: 640–648.

    Article  CAS  PubMed  Google Scholar 

  19. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simonetti G, Bertilaccio MT, Ghia P, Klein U . Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy. Blood 2014; 124: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  21. Iacovelli S, Hug E, Bennardo S, Duehren-von Minden M, Gobessi S, Rinaldi A et al. Two types of BCR interactions are positively selected during leukemia development in the Emu-TCL1 transgenic mouse model of CLL. Blood 2015; 125: 1578–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones JA, Byrd JC . How will B-cell-receptor-targeted therapies change future CLL therapy? Blood 2014; 123: 1455–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lau KH, Wu LW, Sheng MH, Amoui M, Suhr SM, Baylink DJ . An osteoclastic protein-tyrosine phosphatase is a potential positive regulator of the c-Src protein-tyrosine kinase activity: a mediator of osteoclast activity. J Cell Biochem 2006; 97: 940–955.

    Article  CAS  PubMed  Google Scholar 

  24. Lau KH, Stiffel V, Amoui M . An osteoclastic protein-tyrosine phosphatase regulates the beta3-integrin, syk, and shp1 signaling through respective src-dependent phosphorylation in osteoclasts. Am J Physiol Cell Physiol 2012; 302: C1676–C1686.

    Article  CAS  PubMed  Google Scholar 

  25. Saulep-Easton D, Vincent FB, Quah PS, Wei A, Ting SB, Croce CM et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia 2016; 30: 163–172.

    Article  CAS  PubMed  Google Scholar 

  26. Yen Chong S, Lin YC, Czarneski J, Zhang M, Coffman F, Kashanchi F et al. Cell cycle effects of IL-10 on malignant B-1 cells. Genes Immun 2001; 2: 239–247.

    Article  CAS  PubMed  Google Scholar 

  27. DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 2013; 27: 170–182.

    Article  CAS  PubMed  Google Scholar 

  28. Fayad L, Keating MJ, Reuben JM, O'Brien S, Lee BN, Lerner S et al. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 2001; 97: 256–263.

    Article  CAS  PubMed  Google Scholar 

  29. Kara IO, Sahin B, Gunesacar R . Expression of soluble CD27 and interleukins-8 and -10 in B-cell chronic lymphocytic leukemia: correlation with disease stage and prognosis. Adv Ther 2007; 24: 29–40.

    Article  CAS  PubMed  Google Scholar 

  30. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 2010; 42: 454–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gallardo M, Lee HJ, Zhang X, Bueso-Ramos C, Pageon LR, McArthur M et al. hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies. Cancer Cell 2015; 28: 486–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ et al. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 2003; 22: 6319–6331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asbagh LA, Vazquez I, Vecchione L, Budinska E, De Vriendt V, Baietti MF et al. The tyrosine phosphatase PTPRO sensitizes colon cancer cells to anti-EGFR therapy through activation of SRC-mediated EGFR signaling. Oncotarget 2014; 5: 10070–10083.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hsu SH, Motiwala T, Roy S, Claus R, Mustafa M, Plass C et al. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J Cell Biochem 2013; 114: 1810–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T et al. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci USA 2004; 101: 13844–13849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu M, Lin G, Arshadi N, Kalatskaya I, Xue B, Haider S et al. Expression profiling during mammary epithelial cell three-dimensional morphogenesis identifies PTPRO as a novel regulator of morphogenesis and ErbB2-mediated transformation. Mol Cell Biol 2012; 32: 3913–3924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hou J, Xu J, Jiang R, Wang Y, Chen C, Deng L et al. Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology (Baltimore, Md) 2013; 57: 678–688.

    Article  CAS  Google Scholar 

  40. Hermiston ML, Zikherman J, Zhu JW . CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228: 288–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheng MH, Amoui M, Stiffel V, Srivastava AK, Wergedal JE, Lau KH . Targeted transgenic expression of an osteoclastic transmembrane protein-tyrosine phosphatase in cells of osteoclastic lineage increases bone resorption and bone loss in male young adult mice. J Biol Chem 2009; 284: 11531–11545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amoui M, Suhr SM, Baylink DJ, Lau KH . An osteoclastic protein-tyrosine phosphatase may play a role in differentiation and activity of human monocytic U-937 cell-derived, osteoclast-like cells. Am J Physiol Cell Physiol 2004; 287: C874–C884.

    Article  CAS  PubMed  Google Scholar 

  43. Juszczynski P, Chen L, O'Donnell E, Polo JM, Ranuncolo SM, Dalla-Favera R et al. BCL6 modulates tonic BCR signaling in diffuse large B-cell lymphomas by repressing the SYK phosphatase, PTPROt. Blood 2009; 114: 5315–5321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Forconi F, Moss P . Perturbation of the normal immune system in patients with CLL. Blood 2015; 126: 573–581.

    Article  CAS  PubMed  Google Scholar 

  45. Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia 2016; 30: 570–579.

    Article  CAS  PubMed  Google Scholar 

  46. Saulep-Easton D, Vincent FB, Le Page M, Wei A, Ting SB, Croce CM et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia 2014; 28: 2005–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galletti G, Scielzo C, Barbaglio F, Rodriguez TV, Riba M, Lazarevic D et al. Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression. Cell Rep 2016; 14: 1748–1760.

    Article  CAS  PubMed  Google Scholar 

  48. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z . Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 2006; 281: 36303–36316.

    Article  CAS  PubMed  Google Scholar 

  49. Levy-Apter E, Finkelshtein E, Vemulapalli V, Li SS, Bedford MT, Elson A . Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase in osteoclasts. J Biol Chem 2014; 289: 36048–36058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity. J Immunol Methods 2000; 233: 167–177.

    Article  CAS  PubMed  Google Scholar 

  51. White HN . Restriction-PCR fingerprinting of the immunoglobulin VH repertoire: direct detection of an immune response and global analysis of B cell clonality. Eur J Immunol 1998; 28: 3268–3279.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Carlo Croce for the Eμ-TCL1 mice, Professor Zvulun Elazar for the anti-LC3 antibodies, Dr Rebecca Haffner-Krausz for help in preparing PTPROt-targeted mice, Ms Ofira Higfa and Mr Neriah Sharabi for expert animal care, Dr Ron Rotkopf for help with statistical analyses, Dr Ayala Sharp and Mr Eitan Ariel for help with FACS analyses, and Dr Gil Hornung for assistance with analysis of IL-10 expression. JW is supported in part by a studentship from the German-Israeli Helmholtz Research School in Cancer Biology. This study was supported by project grants from the Israel Cancer Research Foundation, from the Minerva Foundation with funds from the Federal German Ministry for Education and Research, and from the Kekst Family Center for Medical Genetics, to AE. AE is the incumbent of the Marshall and Renette Ezralow Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Elson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakim, J., Arman, E., Becker-Herman, S. et al. The PTPROt tyrosine phosphatase functions as an obligate haploinsufficient tumor suppressor in vivo in B-cell chronic lymphocytic leukemia. Oncogene 36, 3686–3694 (2017). https://doi.org/10.1038/onc.2016.523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.523

This article is cited by

Search

Quick links