Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation

Abstract

Histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2) is generally associated with H3K27 methylation and gene silencing, as a member of the polycomb repressor 2 (PRC2) complex. Immunoprecipitation and mass spectrometry of the EZH2–protein interactome in estrogen receptor positive, breast cancer-derived MCF7 cells revealed EZH2 interactions with subunits of chromatin remodeler SWI/SNF complex and TRIM28, which formed a complex with EZH2 distinct from PRC2. Unexpectedly, transcriptome profiling showed that EZH2 primarily activates, rather than represses, transcription in MCF7 cells and with TRIM28 co-regulates a set of genes associated with stem cell maintenance and poor survival of breast cancer patients. TRIM28 depletion repressed EZH2 recruitment to chromatin and expression of this gene set, in parallel with decreased CD44hi/CD24lo mammosphere formation. Mammosphere formation, inhibited by EZH2 depletion, was rescued by ectopic expression of EZH2 but not by TRIM28 expression or by EZH2 mutated at the region (pre-SET domain) of TRIM28 interaction. These results support PRC2-independent functions of EZH2 and TRIM28 in activation of gene expression that promotes mammary stem cell enrichment and maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491–502.

    Article  CAS  Google Scholar 

  2. Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D . Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 2010; 24: 368–380.

    Article  Google Scholar 

  3. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010; 464: 306–310.

    Article  CAS  Google Scholar 

  4. Kim H, Kang K, Kim J . AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res 2009; 37: 2940–2950.

    Article  CAS  Google Scholar 

  5. Sarma K, Cifuentes-Rojas C, Ergun A, Del Rosario A, Jeon Y, White F et al. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 2014; 159: 869–883.

    Article  CAS  Google Scholar 

  6. Bhatnagar S, Gazin C, Chamberlain L, Ou J, Zhu X, Tushir JS et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 2014; 516: 116–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Squazzo SL, O'Geen H, Komashko VM, Krig SR, Jin VX, Jang SW et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 2006; 16: 890–900.

    Article  CAS  Google Scholar 

  8. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050–1063.

    Article  CAS  Google Scholar 

  9. Changchien YC, Tatrai P, Papp G, Sapi J, Fonyad L, Szendroi M et al. Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J Transl Med 2012; 10: 216.

    Article  CAS  Google Scholar 

  10. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  Google Scholar 

  11. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 2013; 9: 643–650.

    Article  CAS  Google Scholar 

  12. Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 2007; 27: 5105–5119.

    Article  CAS  Google Scholar 

  13. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 2011; 19: 86–100.

    Article  CAS  Google Scholar 

  14. Gonzalez ME, Moore HM, Li X, Toy KA, Huang W, Sabel MS et al. EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc Natl Acad Sci USA 2014; 111: 3098–3103.

    Article  CAS  Google Scholar 

  15. Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG . Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol 2009; 175: 1246–1254.

    Article  CAS  Google Scholar 

  16. Iyengar S, Farnham PJ . KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 2011; 286: 26267–26276.

    Article  CAS  Google Scholar 

  17. Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS, Tarabay Y et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 2013; 23: 452–461.

    Article  CAS  Google Scholar 

  18. Wolf D, Goff SP . TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 2007; 131: 46–57.

    Article  CAS  Google Scholar 

  19. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 2011; 44: 361–372.

    Article  CAS  Google Scholar 

  20. Addison J, Koontz C, Fugett JH, Creighton CJ, Chen D, Farrugia MK et al. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res 2014; 75: 344–355.

    Article  Google Scholar 

  21. Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ . A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 2009; 23: 837–848.

    Article  CAS  Google Scholar 

  22. Seki Y, Kurisaki A, Watanabe-Susaki K, Nakajima Y, Nakanishi M, Arai Y et al. TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. Proc Natl Acad Sci USA 2010; 107: 10926–10931.

    Article  CAS  Google Scholar 

  23. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  Google Scholar 

  24. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  Google Scholar 

  25. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci USA 2011; 108: 8212–8217.

    Article  CAS  Google Scholar 

  26. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A et al. A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 2008; 10: 1291–1300.

    Article  CAS  Google Scholar 

  27. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009; 461: 762–767.

    Article  CAS  Google Scholar 

  28. Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol 2005; 15: 942–947.

    Article  CAS  Google Scholar 

  29. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  30. Cama A, Verginelli F, Lotti LV, Napolitano F, Morgano A, D'Orazio A et al. Integrative genetic, epigenetic and pathological analysis of paraganglioma reveals complex dysregulation of NOTCH signaling. Acta Neuropathol 2013; 126: 575–594.

    Article  CAS  Google Scholar 

  31. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  32. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  33. Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O . SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 2015; 10: 145–171.

    Article  CAS  Google Scholar 

  34. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 2013; 45: 592–601.

    Article  CAS  Google Scholar 

  35. Wu RC, Wang TL, Shih Ie M . The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther 2014; 15: 655–664.

    Article  Google Scholar 

  36. Korkaya H, Liu S, Wicha MS . Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 2011; 121: 3804–3809.

    Article  CAS  Google Scholar 

  37. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  Google Scholar 

  38. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    Article  CAS  Google Scholar 

  39. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  Google Scholar 

  40. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  Google Scholar 

  41. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  Google Scholar 

  42. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  43. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    Article  CAS  Google Scholar 

  44. Cheung RK, Utz PJ . Screening: CyTOF-the next generation of cell detection. Nat Rev Rheumatology 2011; 7: 502–503.

    Article  Google Scholar 

  45. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K . Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. Embo J 2004; 23: 4061–4071.

    Article  CAS  Google Scholar 

  46. Margueron R, Reinberg D . The Polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.

    Article  CAS  Google Scholar 

  47. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

    Article  CAS  Google Scholar 

  48. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 2012; 109: 21360–21365.

    Article  CAS  Google Scholar 

  49. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012; 338: 1465–1469.

    Article  CAS  Google Scholar 

  50. Lee ST, Li Z, Wu Z, Aau M, Guan P, Karuturi RK et al. Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers. Mol Cell 2011; 43: 798–810.

    Article  CAS  Google Scholar 

  51. Jung HY, Jun S, Lee M, Kim HC, Wang X, Ji H et al. PAF and EZH2 induce Wnt/beta-catenin signaling hyperactivation. Mol Cell 2013; 52: 193–205.

    Article  CAS  Google Scholar 

  52. Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med 2015; 21: 1491–1496.

    Article  CAS  Google Scholar 

  53. Doyle JM, Gao J, Wang J, Yang M, Potts PR . MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 2010; 39: 963–974.

    Article  CAS  Google Scholar 

  54. Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, Cooney AJ et al. Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 2014; 42: 205–223.

    Article  CAS  Google Scholar 

  55. Zheng L, Baumann U, Reymond JL . An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 2004; 32: e115.

    Article  Google Scholar 

  56. Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E et al. Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci USA 2002; 99: 2654–2659.

    Article  CAS  Google Scholar 

  57. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J et al. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci USA 2009; 106: 11612–11616.

    Article  CAS  Google Scholar 

  58. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

    Article  CAS  Google Scholar 

  59. Anders S, Pyl PT, Huber W . HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31: 166–169.

    Article  CAS  Google Scholar 

  60. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  Google Scholar 

  61. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  Google Scholar 

  62. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 2010; 468: 927–932.

    Article  CAS  Google Scholar 

  63. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  Google Scholar 

  64. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9: R137.

    Article  Google Scholar 

  65. Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B . A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 2012; 81: 467–475.

    Article  Google Scholar 

  66. Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, Zhao E et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 2014; 40: 772–784.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CPRIT RP110471 to MCB, WL and SYD. JL received support by a Gigli Family Endowed Scholarship of the UT-Graduate School of Biomedical Sciences at Houston, TX. AKJ was supported by The Laura and John Arnold Foundation and Odyssey Program fellowship. We thank Dr M-C Hung for the Myc-EZH2 plasmid, Dr J-I Park for Flag-EZH2 plasmids and Dr PR Potts for HA-TRIM28, GST-TRIM28 full-length and RBCC only plasmids. This study used the Science Park NGS Core, supported by CPRIT Core Facility Support Grant RP120348, and the Flow Cytometry and Cellular Imaging Facility, which is supported in part by the National Institutes of Health through MD Anderson's Cancer Center Support Grant CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Barton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xi, Y., Li, W. et al. TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene 36, 2991–3001 (2017). https://doi.org/10.1038/onc.2016.453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.453

This article is cited by

Search

Quick links