Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bcl-2 proteins and calcium signaling: complexity beneath the surface

Abstract

Antiapoptotic Bcl-2-family members are well known for their ‘mitochondrial’ functions as critical neutralizers of proapoptotic Bcl-2-family members, including the executioner multidomain proteins Bax and Bak and the BH3-only proteins. It has been clear for more than 20 years that Bcl-2 proteins can impact intracellular Ca2+ homeostasis and dynamics. Moreover, altered Ca2+ signaling is increasingly linked to oncogenic behavior. Specifically targeting the Ca2+-signaling machinery may thus prove to be a valuable strategy for cancer treatment. Over 10 years ago a major controversy was recognized concerning whether or not Bcl-2 proteins exerted their antiapoptotic functions via Ca2+ signaling through lowering the filling state of the endoplasmic reticulum (ER) Ca2+ stores or by suppressing Ca2+ release from the ER without affecting the filling state of this Ca2+ store. Further research from different laboratories indicated a wide variety of mechanisms by which Bcl-2-family members can impact Ca2+ signaling. In this review, we propose that antiapoptotic Bcl-2-family members are multimodal regulators of intracellular Ca2+-signaling events in cell survival and cell death. We will discuss how different Bcl-2-family members impact cell survival and cell death by regulating Ca2+ transport systems at the ER, mitochondria and plasma membrane and by impacting the organization of organelles and how these insights can be exploited for causing cell death in cancer cells. Finally, we propose that the existing controversy reflects the diversity of links between Bcl-2 proteins and Ca2+ signaling, as certainly not all targets or mechanisms will be operative in every cell type and every condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Berridge MJ . The versatility and complexity of calcium signalling. Novartis Found Symp 2001; 239: 52–64; discussion 64-7, 150-9.

    CAS  PubMed  Google Scholar 

  2. Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J . The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3: a004184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Prins D, Michalak M . Organellar calcium buffers. Cold Spring Harb Perspect Biol 2011; 3: a004069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Parys JB, De Smedt H . Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol 2012; 740: 255–279.

    Article  CAS  PubMed  Google Scholar 

  5. Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G . Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 2014; 1843: 2164–2183.

    Article  CAS  PubMed  Google Scholar 

  6. Fill M, Copello JA . Ryanodine receptor calcium release channels. Physiol Rev 2002; 82: 893–922.

    Article  CAS  PubMed  Google Scholar 

  7. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL . Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2: a003996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bootman MD, Lipp P, Berridge MJ . The organisation and functions of local Ca2+ signals. J Cell Sci 2001; 114: 2213–2222.

    Article  CAS  PubMed  Google Scholar 

  9. Lopreiato R, Giacomello M, Carafoli E . The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 2014; 289: 10261–10268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roome CJ, Empson RM . The contribution of the sodium-calcium exchanger (NCX) and plasma membrane Ca2+ ATPase (PMCA) to cerebellar synapse function. Adv Exp Med Biol 2013; 961: 251–263.

    Article  CAS  PubMed  Google Scholar 

  11. Vashisht A, Trebak M, Motiani RK . STIM and Orai proteins as novel targets for cancer therapy. A review in the theme: cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol 2015; 309: C457–C469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Habermacher C, Dunning K, Chataigneau T, Grutter T . Molecular structure and function of P2X receptors. Neuropharmacology 2015, ; e-pub ahead of print 29 July 2015 doi:10.1016/j.neuropharm.2015.07.032.

    Article  CAS  PubMed  Google Scholar 

  13. Gandini MA, Sandoval A, Felix R . Toxins targeting voltage-activated Ca2+ channels and their potential biomedical applications. Curr Top Med Chem 2015; 15: 604–616.

    Article  CAS  PubMed  Google Scholar 

  14. Gees M, Owsianik G, Nilius B, Voets T . TRP channels. Compr Physiol 2012; 2: 563–608.

    Article  PubMed  Google Scholar 

  15. Burgoyne T, Patel S, Eden ER . Calcium signaling at ER membrane contact sites. Biochim Biophys Acta 2015; 1853: 2012–2017.

    Article  CAS  PubMed  Google Scholar 

  16. Rizzuto R, Brini M, Murgia M, Pozzan T . Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 1993; 262: 744–747.

    Article  CAS  PubMed  Google Scholar 

  17. Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB . The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 2011; 1813: 1003–1013.

    Article  CAS  PubMed  Google Scholar 

  18. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R . Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008; 27: 6407–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marchi S, Patergnani S, Pinton P . The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta 2014; 1837: 461–469.

    Article  CAS  PubMed  Google Scholar 

  20. Bononi A, Missiroli S, Poletti F, Suski JM, Agnoletto C, Bonora M et al. Mitochondria-associated membranes (MAMs) as hotspot Ca2+ signaling units. Adv Exp Med Biol 2012; 740: 411–437.

    Article  CAS  PubMed  Google Scholar 

  21. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P . Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015; 22: 995–1019.

    Article  CAS  PubMed  Google Scholar 

  22. Raturi A, Simmen T . Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 2013; 1833: 213–224.

    Article  CAS  PubMed  Google Scholar 

  23. Csordas G, Thomas AP, Hajnoczky G . Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 1999; 18: 96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rizzuto R, De Stefani D, Raffaello A, Mammucari C . Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012; 13: 566–578.

    Article  CAS  PubMed  Google Scholar 

  25. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R . A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011; 476: 336–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011; 476: 341–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 2010; 39: 121–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palty R, Hershfinkel M, Sekler I . Molecular identity and functional properties of the mitochondrial Na+/Ca2+ exchanger. J Biol Chem 2012; 287: 31650–31657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harr MW, Distelhorst CW . Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2010; 2: a005579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rong Y, Distelhorst CW . Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008; 70: 73–91.

    Article  CAS  PubMed  Google Scholar 

  31. Cardenas C, Foskett JK . Mitochondrial Ca2+ signals in autophagy. Cell Calcium 2012; 52: 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010; 142: 270–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grimm S . The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 2012; 1823: 327–334.

    Article  CAS  PubMed  Google Scholar 

  34. Bonora M, Pinton P . The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 2014; 4: 302.

    Article  PubMed  PubMed Central  Google Scholar 

  35. De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P et al. VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 2012; 19: 267–273.

    Article  CAS  PubMed  Google Scholar 

  36. Hwang MS, Schwall CT, Pazarentzos E, Datler C, Alder NN, Grimm S . Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ 2014; 21: 1733–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999; 284: 339–343.

    Article  CAS  PubMed  Google Scholar 

  38. Roderick HL, Cook SJ . Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008; 8: 361–375.

    Article  CAS  PubMed  Google Scholar 

  39. Raphael M, Lehen'kyi V, Vandenberghe M, Beck B, Khalimonchyk S, Vanden Abeele F et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci USA 2014; 111: E3870–E3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N . TRPV6 channel controls prostate cancer cell proliferation via Ca2+/NFAT-dependent pathways. Oncogene 2007; 26: 7380–7385.

    Article  CAS  PubMed  Google Scholar 

  41. Prevarskaya N, Skryma R, Shuba Y . Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 2011; 11: 609–618.

    Article  CAS  PubMed  Google Scholar 

  42. Yang S, Zhang JJ, Huang XY . Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 2009; 15: 124–134.

    Article  CAS  PubMed  Google Scholar 

  43. McAndrew D, Grice DM, Peters AA, Davis FM, Stewart T, Rice M et al. ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 2011; 10: 448–460.

    Article  CAS  PubMed  Google Scholar 

  44. Bonora M, Giorgi C, Pinton P . Novel frontiers in calcium signaling: a possible target for chemotherapy. Pharmacol Res 2015; 99: 82–85.

    Article  CAS  PubMed  Google Scholar 

  45. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ . Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 2007; 7: 519–530.

    Article  CAS  PubMed  Google Scholar 

  46. Padanyi R, Paszty K, Hegedus L, Varga K, Papp B, Penniston JT et al. Multifaceted plasma membrane Ca2+ pumps: from structure to intracellular Ca2+ handling and cancer. Biochim Biophys Acta 2015, ; e-pub ahead of print 17 December 2015 doi:10.1016/j.bbamcr.2015.12.011.

    Article  CAS  Google Scholar 

  47. Hoth M . CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochim Biophys Acta 2015, ; e-pub ahead of print 17 December 2015 doi:10.1016/j.bbamcr.2015.12.009.

    Article  CAS  Google Scholar 

  48. Dang D, Rao R . Calcium-ATPases: gene disorders and dysregulation in cancer. Biochim Biophys Acta 2015, ; e-pub ahead of print 30 November 2015 doi:10.1016/j.bbamcr.2015.11.016.

    Article  CAS  Google Scholar 

  49. Akl H, Bultynck G . Altered Ca2+ signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta 2013; 1835: 180–193.

    CAS  PubMed  Google Scholar 

  50. Bittremieux M, Parys JB, Pinton P, Bultynck G . ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca2+ signaling. Biochim Biophys Acta 2016, ; e-pub ahead of print 6 January 2016 doi:10.1016/j.bbamcr.2016.01.002.

    Article  CAS  Google Scholar 

  51. Giorgi C, Bonora M, Missiroli S, Poletti F, Ramirez FG, Morciano G et al. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 2015; 6: 1435–1445.

    Article  PubMed  Google Scholar 

  52. Hedgepeth SC, Garcia MI, Wagner LE II, Rodriguez AM, Chintapalli SV, Snyder RR et al. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J Biol Chem 2015; 290: 7304–7313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giorgi C, Wieckowski MR, Pandolfi PP, Pinton P . Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Commun Integr Biol 2011; 4: 334–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dubois C, Vanden Abeele F, Lehen'kyi V, Gkika D, Guarmit B, Lepage G et al. Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 2014; 26: 19–32.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H et al. Functional SNP in the microRNA-367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci USA 2011; 108: 13653–13658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Monteith GR, Davis FM, Roberts-Thomson SJ . Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012; 287: 31666–31673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raynal NJ, Lee JT, Wang Y, Beaudry A, Madireddi P, Garriga J et al. Targeting calcium signaling induces epigenetic reactivation of tumor suppressor genes in cancer. Cancer Res 2015, ; e-pub ahead of print 30 December 2015 doi:10.1158/0008-5472.CAN-14-2391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yip KW, Reed JC . Bcl-2 family proteins and cancer. Oncogene 2008; 27: 6398–6406.

    Article  CAS  PubMed  Google Scholar 

  59. Llambi F, Green DR . Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 2011; 21: 12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Distelhorst CW, Shore GC . Bcl-2 and calcium: controversy beneath the surface. Oncogene 2004; 23: 2875–2880.

    Article  CAS  PubMed  Google Scholar 

  61. Brunelle JK, Letai A . Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 2009; 122: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tait SW, Green DR . Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11: 621–632.

    Article  CAS  PubMed  Google Scholar 

  63. Chipuk JE, Green DR . How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008; 18: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR . The BCL-2 family reunion. Mol Cell 2010; 37: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA et al. Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 2008; 15: 1564–1571.

    Article  CAS  PubMed  Google Scholar 

  66. Kroemer G, Galluzzi L, Brenner C . Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.

    Article  CAS  PubMed  Google Scholar 

  67. Davids MS, Letai A . Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol 2012; 30: 3127–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  69. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202–208.

    Article  CAS  PubMed  Google Scholar 

  70. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9: 351–365.

    Article  CAS  PubMed  Google Scholar 

  71. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rooswinkel RW, van de Kooij B, de Vries E, Paauwe M, Braster R, Verheij M et al. Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 2014; 123: 2806–2815.

    Article  CAS  PubMed  Google Scholar 

  73. Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T . NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 1999; 274: 20415–20420.

    Article  CAS  PubMed  Google Scholar 

  74. Huang DC, Adams JM, Cory S . The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 1998; 17: 1029–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barclay LA, Wales TE, Garner TP, Wachter F, Lee S, Guerra RM et al. Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism. Mol Cell 2015; 57: 873–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G et al. Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell 2015; 27: 852–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H et al. A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim Biophys Acta 2014; 1843: 2240–2252.

    Article  CAS  PubMed  Google Scholar 

  78. Annis MG, Zamzami N, Zhu W, Penn LZ, Kroemer G, Leber B et al. Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 2001; 20: 1939–1952.

    Article  CAS  PubMed  Google Scholar 

  79. Thomenius MJ, Wang NS, Reineks EZ, Wang Z, Distelhorst CW . Bcl-2 on the endoplasmic reticulum regulates Bax activity by binding to BH3-only proteins. J Biol Chem 2003; 278: 6243–6250.

    Article  CAS  PubMed  Google Scholar 

  80. Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU, Kaufmann T . Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 2013; 20: 785–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C . Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 2003; 160: 53–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300: 135–139.

    Article  CAS  PubMed  Google Scholar 

  83. Baffy G, Miyashita T, Williamson JR, Reed JC . Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem 1993; 268: 6511–6519.

    Article  CAS  PubMed  Google Scholar 

  84. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW . Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994; 91: 6569–6573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Magnelli L, Cinelli M, Turchetti A, Chiarugi VP . Bcl-2 overexpression abolishes early calcium waving preceding apoptosis in NIH-3T3 murine fibroblasts. Biochem Biophys Res Commun 1994; 204: 84–90.

    Article  CAS  PubMed  Google Scholar 

  86. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S et al. Mitochondrial Ca2+ and apoptosis. Cell Calcium 2012; 52: 36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 2000; 148: 857–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He H, Lam M, McCormick TS, Distelhorst CW . Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 1997; 138: 1219–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomenius MJ, Distelhorst CW . Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 2003; 116: 4493–4499.

    Article  CAS  PubMed  Google Scholar 

  90. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 2004; 166: 193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vervliet T, Decrock E, Molgo J, Sorrentino V, Missiaen L, Leybaert L et al. Bcl-2 binds to and inhibits ryanodine receptors. J Cell Sci 2014; 127: 2782–2792.

    CAS  PubMed  Google Scholar 

  92. Xu Q, Reed JC . Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1: 337–346.

    Article  CAS  PubMed  Google Scholar 

  93. Arbel N, Shoshan-Barmatz V . Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 2010; 285: 6053–6062.

    Article  CAS  PubMed  Google Scholar 

  94. Shimizu S, Narita M, Tsujimoto Y . Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487.

    Article  CAS  PubMed  Google Scholar 

  95. Shimizu S, Konishi A, Kodama T, Tsujimoto Y . BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 2000; 97: 3100–3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W . Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 1998; 17: 1903–1910.

    Article  CAS  PubMed  Google Scholar 

  97. Ferdek PE, Gerasimenko JV, Peng S, Tepikin AV, Petersen OH, Gerasimenko OV . A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol 2012; 22: 1241–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arbabian A, Brouland JP, Gelebart P, Kovacs T, Bobe R, Enouf J et al. Endoplasmic reticulum calcium pumps and cancer. Biofactors 2011; 37: 139–149.

    Article  CAS  PubMed  Google Scholar 

  99. Curry MC, Roberts-Thomson SJ, Monteith GR . Plasma membrane calcium ATPases and cancer. Biofactors 2011; 37: 132–138.

    Article  CAS  PubMed  Google Scholar 

  100. Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E . Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 2011; 18: 1271–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G . Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47: 297–314.

    Article  CAS  PubMed  Google Scholar 

  102. Bonneau B, Prudent J, Popgeorgiev N, Gillet G . Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim Biophys Acta 2013; 1833: 1755–1765.

    Article  CAS  PubMed  Google Scholar 

  103. Parys JB . The IP3 receptor as a hub for Bcl-2 family proteins in cell death control and beyond. Sci Signal 2014; 7: pe4.

    Article  PubMed  CAS  Google Scholar 

  104. Zhong F, Davis MC, McColl KS, Distelhorst CW . Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 2006; 172: 127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pinton P, Rizzuto R . Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 2006; 13: 1409–1418.

    Article  CAS  PubMed  Google Scholar 

  106. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L . Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 2011; 3: a004317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C . When ER stress reaches a dead end. Biochim Biophys Acta 2013; 1833: 3507–3517.

    Article  CAS  PubMed  Google Scholar 

  108. Kiviluoto S, Vervliet T, Ivanova H, Decuypere JP, De Smedt H, Missiaen L et al. Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. Biochim Biophys Acta 2013; 1833: 1612–1624.

    Article  CAS  PubMed  Google Scholar 

  109. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 2005; 102: 105–110.

    Article  CAS  PubMed  Google Scholar 

  110. Chang MJ, Zhong F, Lavik AR, Parys JB, Berridge MJ, Distelhorst CW . Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proc Natl Acad Sci USA 2014; 111: 1186–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Greenberg EF, Lavik AR, Distelhorst CW . Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. Biochim Biophys Acta 2014; 1843: 2205–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ . Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 2004; 23: 1207–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 2002; 277: 9219–9225.

    Article  CAS  PubMed  Google Scholar 

  114. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 2002; 277: 20301–20308.

    Article  CAS  PubMed  Google Scholar 

  115. Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S et al. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 2004; 15: 355–366.

    Article  CAS  PubMed  Google Scholar 

  116. Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A . The ancient cell death suppressor BAX inhibitor-1. Cell Calcium 2011; 50: 251–260.

    Article  CAS  PubMed  Google Scholar 

  117. Xu C, Xu W, Palmer AE, Reed JC . BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 2008; 283: 11477–11484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim HR, Lee GH, Ha KC, Ahn T, Moon JY, Lee BJ et al. Bax Inhibitor-1 Is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum. J Biol Chem 2008; 283: 15946–15955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bultynck G, Kiviluoto S, Henke N, Ivanova H, Schneider L, Rybalchenko V et al. The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem 2012; 287: 2544–2557.

    Article  CAS  PubMed  Google Scholar 

  120. Kiviluoto S, Schneider L, Luyten T, Vervliet T, Missiaen L, De Smedt H et al. Bax inhibitor-1 is a novel IP3 receptor-interacting and -sensitizing protein. Cell Death Dis 2012; 3: e367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ahn T, Yun CH, Kim HR, Chae HJ . Cardiolipin, phosphatidylserine, and BH4 domain of Bcl-2 family regulate Ca2+/H+ antiporter activity of human Bax inhibitor-1. Cell Calcium 2010; 47: 387–396.

    Article  CAS  PubMed  Google Scholar 

  122. de Mattia F, Gubser C, van Dommelen MM, Visch HJ, Distelmaier F, Postigo A et al. Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 2009; 20: 3638–3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rojas-Rivera D, Armisen R, Colombo A, Martinez G, Eguiguren AL, Diaz A et al. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death Differ 2012; 19: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rojas-Rivera D, Hetz C . TMBIM protein family: ancestral regulators of cell death. Oncogene 2015; 34: 269–280.

    Article  CAS  PubMed  Google Scholar 

  125. Saraiva N, Prole DL, Carrara G, Johnson BF, Taylor CW, Parsons M et al. hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2. J Cell Biol 2013; 202: 699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Saraiva N, Prole DL, Carrara G, Maluquer de Motes C, Johnson BF, Byrne B et al. Human and viral Golgi anti-apoptotic proteins (GAAPs) oligomerize via different mechanisms and monomeric GAAP inhibits apoptosis and modulates calcium. J Biol Chem 2013; 288: 13057–13067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lisak DA, Schacht T, Enders V, Habicht J, Kiviluoto S, Schneider J et al. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: tissue expression, intracellular localization and effects on the ER CA2+-filling state. Biochim Biophys Acta 2015; 1853: 2104–2114.

    Article  CAS  PubMed  Google Scholar 

  128. Dremina ES, Sharov VS, Schoneich C . Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: a possible mechanism for SERCA inactivation. Biochemistry 2006; 45: 175–184.

    Article  CAS  PubMed  Google Scholar 

  129. Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C . Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 2004; 383: 361–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kobrinsky EM, Kirchberger MA . Evidence for a role of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in thapsigargin and Bcl-2 induced changes in Xenopus laevis oocyte maturation. Oncogene 2001; 20: 933–941.

    Article  CAS  PubMed  Google Scholar 

  131. Dremina ES, Sharov VS, Schoneich C . Heat-shock proteins attenuate SERCA inactivation by the anti-apoptotic protein Bcl-2: possible implications for the ER Ca2+-mediated apoptosis. Biochem J 2012; 444: 127–139.

    Article  CAS  PubMed  Google Scholar 

  132. Ahmad S, Ahmad A, Dremina ES, Sharov VS, Guo X, Jones TN et al. Bcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: role in oxidant-mediated cell death. Am J Respir Crit Care Med 2009; 179: 816–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL . Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium 2008; 44: 324–338.

    Article  CAS  PubMed  Google Scholar 

  134. Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB, De Smedt H et al. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA 2009; 106: 14397–14402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K et al. Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals. Mol Cell 2008; 31: 255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Monaco G, Decrock E, Akl H, Ponsaerts R, Vervliet T, Luyten T et al. Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 2012; 19: 295–309.

    Article  CAS  PubMed  Google Scholar 

  137. Monaco G, Vervliet T, Akl H, Bultynck G . The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cell Mol Life Sci 2013; 70: 1171–1183.

    Article  CAS  PubMed  Google Scholar 

  138. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C . Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 2010; 285: 13678–13684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Monaco G, Decrock E, Nuyts K, Wagner LE, Luyten T, Strelkov SV et al. Alpha-helical destabilization of the Bcl-2-BH4-domain peptide abolishes its ability to inhibit the IP3 receptor. PLoS One 2013; 8: e73386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Akl H, Monaco G, La Rovere R, Welkenhuyzen K, Kiviluoto S, Vervliet T et al. IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis 2013; 4: e632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vervloessem T, Yule DI, Bultynck G, Parys JB . The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2+-release channel. Biochim Biophys Acta 2015; 1853: 1992–2005.

    Article  CAS  PubMed  Google Scholar 

  142. Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calve B, Augert A et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 2014; 5: 3792.

    Article  CAS  PubMed  Google Scholar 

  143. Monaco G, Beckers M, Ivanova H, Missiaen L, Parys JB, De Smedt H et al. Profiling of the Bcl-2/Bcl-X(L)-binding sites on type 1 IP3 receptor. Biochem Biophys Res Commun 2012; 428: 31–35.

    Article  CAS  PubMed  Google Scholar 

  144. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB et al. The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 2005; 7: 1021–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chan J, Yamazaki H, Ishiyama N, Seo MD, Mal TK, Michikawa T et al. Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 2010; 285: 36092–36099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Foskett JK, White C, Cheung KH, Mak DO . Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87: 593–658.

    Article  CAS  PubMed  Google Scholar 

  147. Foskett JK, Yang Y, Cheung KH, Vais . Bcl-xL regulation of InsP3 receptor gating mediated by dual Ca2+ release channel BH3 domains. Biophys J 2009; 96: 391a.

    Article  Google Scholar 

  148. Palmer AE, Jin C, Reed JC, Tsien RY . Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 2004; 101: 17404–17409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C . Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci USA 2007; 104: 12565–12570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sung PJ, Tsai FD, Vais H, Court H, Yang J, Fehrenbacher N et al. Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proc Natl Acad Sci USA 2013; 110: 20593–20598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Munoz-Pinedo C, Martin SJ . Autosis: a new addition to the cell death Tower of Babel. Cell Death Dis 2014; 5: e1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB . Bcl-XL affects Ca2+ homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 2002; 99: 9830–9835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jayaraman T, Marks AR . T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 1997; 17: 3005–3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJ . The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 2013; 288: 25340–25349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Verbert L, Lee B, Kocks SL, Assefa Z, Parys JB, Missiaen L et al. Caspase-3-truncated type 1 inositol 1,4,5-trisphosphate receptor enhances intracellular Ca2+ leak and disturbs Ca2+ signalling. Biol Cell 2008; 100: 39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J et al. Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 2004; 279: 43227–43236.

    Article  CAS  PubMed  Google Scholar 

  157. Nakayama T, Hattori M, Uchida K, Nakamura T, Tateishi Y, Bannai H et al. The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: possible physiological significance of specific cleavage by caspase 3. Biochem J 2004; 377: 299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hirota J, Furuichi T, Mikoshiba K . Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J Biol Chem 1999; 274: 34433–34437.

    Article  CAS  PubMed  Google Scholar 

  159. Haug LS, Walaas SI, Ostvold AC . Degradation of the type I inositol 1,4,5-trisphosphate receptor by caspase-3 in SH-SY5Y neuroblastoma cells undergoing apoptosis. J Neurochem 2000; 75: 1852–1861.

    Article  CAS  PubMed  Google Scholar 

  160. Akimzhanov AM, Barral JM, Boehning D . Caspase 3 cleavage of the inositol 1,4,5-trisphosphate receptor does not contribute to apoptotic calcium release. Cell Calcium 2013; 53: 152–158.

    Article  CAS  PubMed  Google Scholar 

  161. Elkoreh G, Blais V, Beliveau E, Guillemette G, Denault JB . Type 1 inositol-1,4,5-trisphosphate receptor is a late substrate of caspases during apoptosis. J Cell Biochem 2012; 113: 2775–2784.

    Article  CAS  PubMed  Google Scholar 

  162. Vervliet T, Lemmens I, Vandermarliere E, Decrock E, Ivanova H, Monaco G et al. Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Sci Rep 2015; 5: 9641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vervliet T, Parys JB, Bultynck G . Bcl-2 and FKBP12 bind to IP3 and ryanodine receptors at overlapping sites: the complexity of protein-protein interactions for channel regulation. Biochem Soc Trans 2015; 43: 396–404.

    Article  CAS  PubMed  Google Scholar 

  164. Morciano G, Giorgi C, Balestra D, Marchi S, Perrone D, Pinotti M et al. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol Biol Cell 2016; 27: 20–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hanson CJ, Bootman MD, Distelhorst CW, Maraldi T, Roderick HL . The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect. Cell Calcium 2008; 44: 243–258.

    Article  CAS  PubMed  Google Scholar 

  166. Berman SB, Chen YB, Qi B, McCaffery JM, Rucker EB, Goebbels S et al. Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons. J Cell Biol 2009; 184: 707–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Klee M, Pimentel-Muinos FX . Bcl-XL specifically activates Bak to induce swelling and restructuring of the endoplasmic reticulum. J Cell Biol 2005; 168: 723–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Varadarajan S, Bampton ET, Smalley JL, Tanaka K, Caves RE, Butterworth M et al. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ 2012; 19: 1896–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang X, Olberding KE, White C, Li C . Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ 2011; 18: 38–47.

    Article  PubMed  CAS  Google Scholar 

  170. Kanekura K, Ma X, Murphy JT, Zhu LJ, Diwan A, Urano F . IRE1 prevents endoplasmic reticulum membrane permeabilization and cell death under pathological conditions. Sci Signal 2015; 8: ra62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N . VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31: 227–285.

    Article  CAS  PubMed  Google Scholar 

  172. Pavlov E, Grigoriev SM, Dejean LM, Zweihorn CL, Mannella CA, Kinnally KW . The mitochondrial channel VDAC has a cation-selective open state. Biochim Biophys Acta 2005; 1710: 96–102.

    Article  CAS  PubMed  Google Scholar 

  173. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V . Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 2008; 283: 13482–13490.

    Article  CAS  PubMed  Google Scholar 

  174. Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V . In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 2004; 377: 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Shoshan-Barmatz V, Keinan N, Zaid H . Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr 2008; 40: 183–191.

    Article  CAS  PubMed  Google Scholar 

  176. Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V . The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 2005; 12: 751–760.

    Article  CAS  PubMed  Google Scholar 

  177. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 2006; 175: 901–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Arbel N, Ben-Hail D, Shoshan-Barmatz V . Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 2012; 287: 23152–23161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N et al. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 2009; 122: 1906–1916.

    Article  CAS  PubMed  Google Scholar 

  180. Monaco G, Decrock E, Arbel N, van Vliet AR, La Rovere RM, De Smedt H et al. The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J Biol Chem 2015; 290: 9150–9161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Malia TJ, Wagner G . NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 2007; 46: 514–525.

    Article  CAS  PubMed  Google Scholar 

  182. Huang H, Hu X, Eno CO, Zhao G, Li C, White C . An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 2013; 288: 19870–19881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rajan S, Choi M, Nguyen QT, Ye H, Liu W, Toh HT et al. Structural transition in Bcl-xL and its potential association with mitochondrial calcium ion transport. Sci Rep 2015; 5: 10609.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Michels J, Kepp O, Senovilla L, Lissa D, Castedo M, Kroemer G et al. Functions of BCL-X L at the interface between cell death and metabolism. Int J Cell Biol 2013; 2013: 705294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Li H, Chen Y, Jones AF, Sanger RH, Collis LP, Flannery R et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 2008; 105: 2169–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 2011; 13: 1224–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Huang H, Shah K, Bradbury NA, Li C, White C . Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis 2014; 5: e1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhu L, Yu Y, Chua BH, Ho YS, Kuo TH . Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. J Mol Cell Cardiol 2001; 33: 2135–2144.

    Article  CAS  PubMed  Google Scholar 

  189. Zorzano A, Liesa M, Sebastian D, Segales J, Palacin M . Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 2010; 21: 566–574.

    Article  CAS  PubMed  Google Scholar 

  190. Pernas L, Scorrano L . Mito-morphosis mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 2015; 78: 505–531.

    Article  PubMed  CAS  Google Scholar 

  191. Cleland MM, Norris KL, Karbowski M, Wang C, Suen DF, Jiao S et al. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 2011; 18: 235–247.

    Article  CAS  PubMed  Google Scholar 

  192. Autret A, Martin SJ . Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 2009; 36: 355–363.

    Article  CAS  PubMed  Google Scholar 

  193. Brooks C, Wei Q, Feng L, Dong G, Tao Y, Mei L et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 2007; 104: 11649–11654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ . Role of Bax and Bak in mitochondrial morphogenesis. Nature 2006; 443: 658–662.

    Article  CAS  PubMed  Google Scholar 

  195. Brini M, Cali T, Ottolini D, Carafoli E . The plasma membrane calcium pump in health and disease. FEBS J 2013; 280: 5385–5397.

    Article  CAS  PubMed  Google Scholar 

  196. Krebs J . The plethora of PMCA isoforms: alternative splicing and differential expression. Biochim Biophys Acta 2015; 1853: 2018–2024.

    Article  CAS  PubMed  Google Scholar 

  197. Cao X, Choi S, Maleth JJ, Park S, Ahuja M, Muallem S . The ER/PM microdomain, PI(4,5)P2 and the regulation of STIM1-Orai1 channel function. Cell Calcium 2015; 58: 342–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Huang G, Yao J, Zeng W, Mizuno Y, Kamm KE, Stull JT et al. ER stress disrupts Ca2+-signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice. J Cell Sci 2006; 119: 153–161.

    Article  CAS  PubMed  Google Scholar 

  199. Treves S, Vukcevic M, Griesser J, Armstrong CF, Zhu MX, Zorzato F . Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. J Cell Sci 2010; 123: 4170–4181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A et al. Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. J Cell Biol 2004; 166: 537–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dellis O, Dedos SG, Tovey SC, Taufiq UrR, Dubel SJ, Taylor CW . Ca2+ entry through plasma membrane IP3 receptors. Science 2006; 313: 229–233.

    Article  CAS  PubMed  Google Scholar 

  202. Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 2011; 118: 1663–1674.

    Article  CAS  PubMed  Google Scholar 

  203. Vogler M, Hamali HA, Sun XM, Bampton ET, Dinsdale D, Snowden RT et al. BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood 2011; 117: 7145–7154.

    Article  CAS  PubMed  Google Scholar 

  204. Schoenwaelder SM, Jackson SP . Bcl-xL-inhibitory BH3 mimetics (ABT-737 or ABT-263) and the modulation of cytosolic calcium flux and platelet function [author reply]. Blood 2012; 119: 1320–1321.

    Article  CAS  PubMed  Google Scholar 

  205. Akl H, Vandecaetsbeek I, Monaco G, Kauskot A, Luyten T, Welkenhuyzen K et al. HA14-1, but not the BH3 mimetic ABT-737, causes Ca2+ dysregulation in platelets and human cell lines. Haematologica 2013; 98: e49–e51.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H et al. Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 2011; 117: 2924–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Akl H, La Rovere RM, Janssens A, Vandenberghe P, Parys JB, Bultynck G . HA14-1 potentiates apoptosis in B-cell cancer cells sensitive to a peptide disrupting IP3 receptor / Bcl-2 complexes. Int J Dev Biol 2015; 59: 391–398.

    Article  CAS  PubMed  Google Scholar 

  208. Lavik AR, Zhong F, Chang MJ, Greenberg E, Choudhary Y, Smith MR et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget 2015; 6: 27388–27402.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Greenberg EF, McColl KS, Zhong F, Wildey G, Dowlati A, Distelhorst CW . Synergistic killing of human small cell lung cancer cells by the Bcl-2-inositol 1,4,5-trisphosphate receptor disruptor BIRD-2 and the BH3-mimetic ABT-263. Cell Death Dis 2015; 6: e2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Liu Z, Wild C, Ding Y, Ye N, Chen H, Wold EA et al. BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discov Today 2015; S1359-6446: 00443–2.

    Google Scholar 

  211. Vervloessem T, La Rovere R, Bultynck G . Antagonizing Bcl-2's BH4 domain in cancer. Aging 2015; 7: 748–749.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Deng X, Gao F, Flagg T, Anderson J, May WS . Bcl2's flexible loop domain regulates p53 binding and survival. Mol Cell Biol 2006; 26: 4421–4434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116: 527–540.

    Article  CAS  PubMed  Google Scholar 

  214. Carpio MA, Michaud M, Zhou W, Fisher JK, Walensky LD, Katz SG . BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci USA 2015; 112: 7201–7206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work performed in the authors’ laboratory was supported by grants from the Research Foundation-Flanders (FWO grants 6.057.12, G.0819.13, G.0C91.14 and G.0A34.16), by the Research Council of the KU Leuven (OT grant 14/101) and by the Interuniversity Attraction Poles Program (Belgian Science Policy; IAP-P7/13). TV is a recipient of a post-doctoral fellowship of the Research Council of the KU Leuven (BOF PDM/15/188). We thank all lab members for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Bultynck.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vervliet, T., Parys, J. & Bultynck, G. Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35, 5079–5092 (2016). https://doi.org/10.1038/onc.2016.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.31

This article is cited by

Search

Quick links