Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human EHMT2/G9a activates p53 through methylation-independent mechanism

Subjects

Abstract

p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DAPI:

4,6 diamidino- 2-phenylindole

GLP:

G9a-like protein

HATs:

histone acetyltransferases

HMTs:

histone methyltransferases

hG9a:

human G9a

hp53:

human p53

KMT:

lysine methyltransferase

mG9a:

mouse G9a

mp53:

mouse p53

PTMs:

post-translational modificaitions.

References

  1. Vousden KH, Ryan KM . P53 and Metabolism. Nat Rev Cancer 2009; 9: 691–700.

    Article  CAS  PubMed  Google Scholar 

  2. Kruse J-P, Gu W . Modes of p53 regulation. Cell 2009; 137: 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenberg RA, Chin L, Femino A, Lee K, Gottlieb GJ, Singer RH et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a ⌬ 2/3 cancer-prone mouse. Cell 1999; 97: 515–525.

    Article  CAS  PubMed  Google Scholar 

  4. Stiewe T . The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 2007; 7: 165–168.

    Article  CAS  PubMed  Google Scholar 

  5. Michalak EM, Vandenberg CJ, Delbridge ARD, Wu L, Scott CL, Adams JM et al. Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev 2010; 24: 1608–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basu A, Haldar S . The relationship between Bcl2, Bax and p53 : consequences for cell cycle progression and cell death. Mol Hum Reprod 1998; 4: 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  7. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  8. Hermeking H . p53 enters the microRNA world. Cancer Cell 2007; 12: 414–418.

    Article  CAS  PubMed  Google Scholar 

  9. Lezina L, Purmessur N, Antonov AV, Ivanova T, Karpova E, Krishan K et al. miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis 2013; 4: e953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang A, Xu M, Mo Y . Role of the lncRNA− p53 regulatory network in cancer. J Mol Cell Biol 2014; 6: 181–191.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pant V, Lozano G . Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev 2014; 28: 1739–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marouco D, Garabadgiu AV, Melino G, Barlev NA . Lysine-specific modifications of p53: a matter of life and death? Oncotarget 2013; 4: 1556–1571.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moiseeva TN, Bottrill A, Melino G, Barlev NA . DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 2013; 44: 1338–1348.

    Google Scholar 

  14. Fedorova O, Moiseeva T, Nikiforov A, Tsimokha A, Livinskaya V, Hodson M et al. Proteomic analysis of the 20 S proteasome (PSMA3)-interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochem Biophys Res Commun 2011; 416: 258–265.

    Article  CAS  PubMed  Google Scholar 

  15. Sims RJ, Reinberg D . Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 2008; 9: 815–820.

    Article  CAS  PubMed  Google Scholar 

  16. Brooks CL, Gu W . p53 Regulation by Ubiquitin. FEBS Lett 2011; 585: 2803–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Espinosa JM, Emerson BM . Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 2001; 8: 57–69.

    Article  CAS  PubMed  Google Scholar 

  18. Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 2001; 8: 1243–1254.

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F et al. Methylation-Acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007; 27: 6756–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA 2011; 108: 1925–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006; 444: 629–632.

    Article  CAS  PubMed  Google Scholar 

  22. Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 2007; 27: 636–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang J, Dorsey J, Chuikov S, Pérez-Burgos L, Zhang X, Jenuwein T et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 2010; 285: 9636–9641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang Y, Zhang X, Horton JR, Upadhyay AK, Spannhoff A, Liu J et al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 2009; 16: 312–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005; 19: 815–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y . Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001; 276: 25309–25317.

    Article  CAS  PubMed  Google Scholar 

  27. Shinkai Y, Tachibana M . H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 2011; 25: 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a Histone Methyltransferase. Mol Cell 2007; 25: 473–481.

    Article  CAS  PubMed  Google Scholar 

  29. Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T et al. Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. J Biol Chem 2009; 284: 8395–8405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM et al. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010; 3: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu Y, Song C, Zhang Q, DiMaggio PA, Garcia BA, York A et al. Histone H3 Lysine 56 Methylation regulates DNA replication through its interaction with PCNA. Mol Cell 2012; 46: 7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R . G9a, a multipotent regulator of gene expression. Epigenetics 2013; 8: 16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bittencourt D, Wu D-Y, Jeong KW, Gerke DS, Herviou L, Ianculescu I et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc Natl Acad Sci USA 2012; 109: 19673–19678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Purcell DJ, Jeong KW, Bittencourt D, Gerke DS, Stallcup MR . A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation. J Biol Chem 2011; 286: 41963–41971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie P, Tian C, An L, Nie J, Lu K, Xing G et al. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. Cell Signal 2008; 20: 1671–1678.

    Article  CAS  PubMed  Google Scholar 

  36. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432: 353–360.

    Article  CAS  PubMed  Google Scholar 

  37. Brown S, Campbell R, Sanderson C . Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm Genome 2001; 12: 916–924.

    Article  CAS  PubMed  Google Scholar 

  38. Collins R, Cheng X . A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Res 2010; 38: 3503–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sullivan K, Gallant-Behm C, Henry R, Fraikin J, Espinosa J . The p53 circuit board. Biochim Biophys Acta 2012; 1825: 229–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee DY, Northrop JP, Kuo M-H, Stallcup MR . Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem 2006; 281: 8476–8485.

    Article  CAS  PubMed  Google Scholar 

  41. Gu W, Shi XL, Roeder RG . Synergistic activation of transcription by CBP and p53. Nature 1997; 387: 819–823.

    Article  CAS  PubMed  Google Scholar 

  42. Henry RA, Kuo YM, Andrews AJ . Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 2013; 52: 5746–5759.

    Article  CAS  PubMed  Google Scholar 

  43. Antonov AV, Krestyaninova M, Knight R, Rodchenkov I, Melino G, Barlev NA . PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome. Oncogene 2014; 33: 1621–1628.

    CAS  PubMed  Google Scholar 

  44. Antonov AV . BioProfiling.de: analytical web portal for high-throughput cell biology. Nucleic Acids Res 2011; 39: W323–W327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B et al. The Methyltransferase Set7/9 (Setd7) is dispensable for the p53-Mediated DNA damage response in vivo. Mol Cell 2011; 43: 681–688.

    Article  CAS  PubMed  Google Scholar 

  46. Lehnertz B, Rogalski JC, Schulze FM, Yi L, Lin S, Kast J et al. p53-Dependent transcription and tumor suppression are not affected in Set7/9-Deficient Mice. Mol Cell 2011; 43: 673–680.

    Article  CAS  PubMed  Google Scholar 

  47. Chaturvedi C-P, Somasundaram B, Singh K, Carpenedo RL, Stanford WL, Dilworth FJ et al. Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proc Natl Acad Sci USA 2012; 109: 18845–18850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dong C, Yuan T, Wu Y, Wang Y, Fan TWM, Miriyala S et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2012; 23: 316–331.

    Article  Google Scholar 

  49. Mulligan P, Westbrook TF, Ottinger M, Pavlova N, Chang B, Macia E et al. CDYL bridges REST and Histone Methyltransferases for Gene repression and suppression of cellular transformation. Mol Cell 2008; 32: 718–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oh ST, Kim KB, Chae YC, Kang JY, Hahn Y, Seo SB . H3K9 histone methyltransferase G9a-mediated transcriptional activation of p21. FEBS Lett 2014; 588: 685–691.

    Article  CAS  PubMed  Google Scholar 

  51. Thandapani P, O’Connor TR, Bailey TL, Richard S . Defining the RGG/RG Motif. Mol Cell 2013; 50: 613–623.

    Article  CAS  PubMed  Google Scholar 

  52. Lezina L, Aksenova V, Ivanova T, Purmessur N, Antonov AV, Tentler D et al. KMTase Set7/9 is a critical regulator of E2F1 activity upon genotoxic stress. Cell Death Differ 2014; 21: 1889–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lezina L, Aksenova V, Fedorova O, Malikova D, Shuvalov O, Antonov AV et al. KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget 2015; 6: 25843–25855.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Celardo I, Grespi F, Antonov A, Bernassola F, Garabadgiu AV, Melino G et al. Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis 2013; 4: e645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr O. Binda (Newcastle University, UK), Dr MR. Stallcup (University of Southern California, USA), Dr C-M Chiang (University of Texas Southwestern Medical Center, USA), Dr SB Seo (Chung-Ang University, Korea), Dr P. Muller (MRC Toxicology Unit, UK) for providing various constructs and reagents. We also thank S Cowley lab (University of Leicester, UK) for providing E14 cells. This work was supported by grants from RSF 14-15-00816 to (E.V. and N.B.); M.R. was supported by a Doctoral Studentship from the Kurdistan Regional Government (Iraq); A.V.A. was supported by MCB RAS programme; G.M. acknowledges the grant support from Medical Research Council, AIRC 2014 IG15653, AIRC 5xmille MCO9979, AIRC 2011 IG11955 and Fondazione Roma malattie Non trasmissibili Cronico-Degenerative (NCD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N A Barlev.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rada, M., Vasileva, E., Lezina, L. et al. Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene 36, 922–932 (2017). https://doi.org/10.1038/onc.2016.258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.258

This article is cited by

Search

Quick links