Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Pathogenic H elicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system

Abstract

Helicobacter pylori (H. pylori) is the strongest identified risk factor for gastric cancer, the third most common cause of cancer-related death worldwide. An H. pylori constituent that augments cancer risk is the strain-specific cag pathogenicity island, which encodes a type IV secretion system (T4SS) that translocates a pro-inflammatory and oncogenic protein, CagA, into epithelial cells. However, the majority of persons colonized with CagA+ H. pylori strains do not develop cancer, suggesting that other microbial effectors also have a role in carcinogenesis. Toll-like receptor 9 (TLR9) is an endosome bound, innate immune receptor that detects and responds to hypo-methylated CpG DNA motifs that are most commonly found in microbial genomes. High-expression tlr9 polymorphisms have been linked to the development of premalignant lesions in the stomach. We now demonstrate that levels of H. pylori-mediated TLR9 activation and expression are directly related to gastric cancer risk in human populations. Mechanistically, we show for the first time that the H. pylori cancer-associated cag T4SS is required for TLR9 activation and that H. pylori DNA is actively translocated by the cag T4SS to engage this host receptor. Activation of TLR9 occurs through a contact-dependent mechanism between pathogen and host, and involves transfer of microbial DNA that is both protected as well as exposed during transport. These results indicate that TLR9 activation via the cag island may modify the risk for malignancy within the context of H. pylori infection and provide an important framework for future studies investigating the microbial–epithelial interface in gastric carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Amieva M, Peek RM Jr . Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 2016; 150: 64–78.

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  3. Ernst PB, Peura DA, Crowe SE . The translation of Helicobacter pylori basic research to patient care. Gastroenterology 2006; 130: 188–206.

    Article  CAS  PubMed  Google Scholar 

  4. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS . Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci USA 1999; 96: 14559–14564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R . Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000; 287: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  6. Stein M, Rappuoli R, Covacci A . Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 2000; 97: 1263–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR et al. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2000; 2: 155–164.

    Article  CAS  PubMed  Google Scholar 

  8. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S . Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 2002; 277: 6775–6778.

    Article  CAS  PubMed  Google Scholar 

  9. Tammer I, Brandt S, Hartig R, Konig W, Backert S . Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 2007; 132: 1309–1319.

    Article  CAS  PubMed  Google Scholar 

  10. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I- specific and disease-associated virulence factors. Proc Natl Acad Sci USA 1996; 93: 14648–14653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998; 28: 37–53.

    Article  CAS  PubMed  Google Scholar 

  12. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997; 388: 539–547.

    Article  CAS  PubMed  Google Scholar 

  13. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 1999; 397: 176–180.

    Article  PubMed  Google Scholar 

  14. Crabtree JE, Wyatt JI, Sobala GM, Miller G, Tompkins DS, Primrose JN et al. Systemic and mucosal humoral responses to Helicobacter pylori in gastric cancer. Gut 1993; 34: 1339–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995; 55: 2111–2115.

    CAS  PubMed  Google Scholar 

  16. Parsonnet J, Friedman GD, Orentreich N, Vogelman H . Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 1997; 40: 297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuipers EJ, Perez-Perez GI, Meuwissen SG, Blaser MJ . Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 1995; 87: 1777–1780.

    Article  CAS  PubMed  Google Scholar 

  18. Polk DB, Peek RM Jr . Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010; 10: 403–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol 2004; 5: 1166–1174.

    Article  CAS  Google Scholar 

  20. Bates S, Cashmore AM, Wilkins BM . IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the tra2 mating system. J Bacteriol 1998; 180: 6538–6543.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heinemann JA, Sprague GF Jr . Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 1989; 340: 205–209.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Gonzalez E, de Paz HD, Alperi A, Agundez L, Faustmann M, Sangari FJ et al. Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol 2011; 193: 6257–6265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schroder G, Schuelein R, Quebatte M, Dehio C . Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 2011; 108: 14643–14648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waters VL . Conjugation between bacterial and mammalian cells. Nat Genet 2001; 29: 375–376.

    Article  CAS  PubMed  Google Scholar 

  25. Cascales E, Christie PJ . Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 2004; 304: 1170–1173.

    Article  CAS  PubMed  Google Scholar 

  26. Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 1977; 11: 263–271.

    Article  CAS  PubMed  Google Scholar 

  27. Christie PJ . Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 1997; 179: 3085–3094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V . Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 2001; 98: 1871–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barton GM . A calculated response: control of inflammation by the innate immune system. J Clin Invest 2008; 118: 413–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castano-Rodriguez N, Kaakoush NO, Mitchell HM . Pattern-recognition receptors and gastric cancer. Front Immunol 2014; 5: 336.

    PubMed  PubMed Central  Google Scholar 

  31. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  PubMed  Google Scholar 

  32. Pachathundikandi SK, Lind J, Tegtmeyer N, El-Omar EM, Backert S . Interplay of the gastric pathogen Helicobacter pylori with toll-like receptors. Biomed Res Int 2015; 2015: 192420.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chang YJ, Wu MS, Lin JT, Chen CC . Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol 2005; 175: 8242–8252.

    Article  CAS  PubMed  Google Scholar 

  34. Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H et al. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 2004; 66: 1465–1477.

    Article  CAS  PubMed  Google Scholar 

  35. Ilvesaro JM, Merrell MA, Li L, Wakchoure S, Graves D, Brooks S et al. Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Mol Cancer Res 2008; 6: 1534–1543.

    Article  CAS  PubMed  Google Scholar 

  36. Kauppila JH, Karttunen TJ, Saarnio J, Nyberg P, Salo T, Graves DE et al. Short DNA sequences and bacterial DNA induce esophageal, gastric, and colorectal cancer cell invasion. APMIS 2013; 121: 511–522.

    Article  CAS  PubMed  Google Scholar 

  37. Schmausser B, Andrulis M, Endrich S, Lee SK, Josenhans C, Muller-Hermelink HK et al. Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection. Clin Exp Immunol 2004; 136: 521–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang TR, Peng JC, Qiao YQ, Zhu MM, Zhao D, Shen J et al. Helicobacter pylori regulates TLR4 and TLR9 during gastric carcinogenesis. Int J Clin Exp Pathol 2014; 7: 6950–6955.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Castano-Rodriguez N, Kaakoush NO, Pardo AL, Goh KL, Fock KM, Mitchell HM . Genetic polymorphisms in the Toll-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer. Human Immunol 2014; 75: 808–815.

    Article  CAS  Google Scholar 

  40. Torres J, Lopez L, Lazcano E, Camorlinga M, Flores L, Munoz O . Trends in Helicobacter pylori infection and gastric cancer in Mexico. Cancer Epidemiol Biomarkers Prev 2005; 14: 1874–1877.

    Article  PubMed  Google Scholar 

  41. Correa P, Cuello C, Duque E, Burbano LC, Garcia FT, Bolanos O et al. Gastric cancer in Colombia. III. Natural history of precursor lesions. J Natl Cancer Inst 1976; 57: 1027–1035.

    Article  CAS  PubMed  Google Scholar 

  42. Cuello C, Correa P, Haenszel W, Gordillo G, Brown C, Archer M et al. Gastric cancer in Colombia. I. Cancer risk and suspect environmental agents. J Natl Cancer Inst 1976; 57: 1015–1020.

    Article  CAS  PubMed  Google Scholar 

  43. Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 2008; 135: 91–99.

    Article  CAS  PubMed  Google Scholar 

  44. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 2002; 94: 1680–1687.

    Article  CAS  PubMed  Google Scholar 

  45. Bravo LE, van Doom LJ, Realpe JL, Correa P . Virulence-associated genotypes of Helicobacter pylori: do they explain the African enigma? Am J Gastroenterol 2002; 97: 2839–2842.

    Article  PubMed  Google Scholar 

  46. Christie PJ, Whitaker N, Gonzalez-Rivera C . Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 2014; 1843: 1578–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Linz B, Windsor HM, McGraw JJ, Hansen LM, Gajewski JP, Tomsho LP et al. A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat Commun 2014; 5: 4165.

    Article  CAS  PubMed  Google Scholar 

  48. Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA 2005; 102: 10646–10651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alvarez-Arellano L, Cortes-Reynosa P, Sanchez-Zauco N, Salazar E, Torres J, Maldonado-Bernal C . TLR9 and NF-kappaB are partially involved in activation of human neutrophils by Helicobacter pylori and its purified DNA. PLoS One 2014; 9: e101342.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Otani K, Tanigawa T, Watanabe T, Nadatani Y, Sogawa M, Yamagami H et al. Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of Helicobacter pylori-induced gastritis. Biochem Biophys Res Commun 2012; 426: 342–349.

    Article  CAS  PubMed  Google Scholar 

  51. Rad R, Ballhorn W, Voland P, Eisenacher K, Mages J, Rad L et al. Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 2009; 136: 2247–2257.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez-Gonzalez E, Backert S . DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol 2014; 49: 594–604.

    Article  CAS  PubMed  Google Scholar 

  53. Fischer W, Windhager L, Rohrer S, Zeiller M, Karnholz A, Hoffmann R et al. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 2010; 38: 6089–6101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kersulyte D, Velapatino B, Mukhopadhyay AK, Cahuayme L, Bussalleu A, Combe J et al. Cluster of type IV secretion genes in Helicobacter pylori's plasticity zone. J Bacteriol 2003; 185: 3764–3772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suarez G, Romero-Gallo J, Piazuelo MB, Wang G, Maier R, Forsberg LS et al. Modification of Helicobacter pylori peptidoglycan enhances NOD1 activation and promotes cancer of the stomach. Cancer Res 2015; 75: 1749–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamilton HL, Dominguez NM, Schwartz KJ, Hackett KT, Dillard JP . Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 2005; 55: 1704–1721.

    Article  CAS  PubMed  Google Scholar 

  57. Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG et al. Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 2015; 34: 3429–3440.

    Article  CAS  PubMed  Google Scholar 

  58. Sierra JC, Hobbs S, Chaturvedi R, Yan F, Wilson KT, Peek RM Jr et al. Induction of COX-2 expression by Helicobacter pylori is mediated by activation of epidermal growth factor receptor in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2013; 305: G196–G203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barrozo RM, Cooke CL, Hansen LM, Lam AM, Gaddy JA, Johnson EM et al. Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog 2013; 9: e1003189.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Crawford HC, Krishna US, Israel DA, Matrisian LM, Washington MK, Peek RM Jr . Helicobacter pylori strain-selective induction of matrix metalloproteinase-7 in vitro and within gastric mucosa. Gastroenterology 2003; 125: 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  61. Johnson EM, Gaddy JA, Voss BJ, Hennig EE, Cover TL . Genes required for assembly of pili associated with the Helicobacter pylori cag type IV secretion system. Infect Immun 2014; 82: 3457–3470.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE et al. Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 2011; 7: e1002237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the following core laboratories and personnel at Vanderbilt University for their contributions to these studies: Tissue Acquisition and Pathology Core; Division of Animal Care; Cell Imaging Shared Resource Core (CISR) and the Digestive Disease Research Center. This work was supported by NIH R01-DK58587, R01-CA77955, P01-CA116087 and P30-DK058404 (RMP); Vanderbilt CTSA grant UL1 TR000445 from NCATS/NIH (VICTR award VR7227), APS 1-04-520-9211 and institutional funds (MH); R01-DK053620, R01-CA190612, and a Department of Veterans Affairs Merit Review grant I01BX001453 (KTW); and P01-CA028842 (KTW and PC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Peek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, M., Shaffer, C., Sierra, J. et al. Pathogenic H elicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 35, 6262–6269 (2016). https://doi.org/10.1038/onc.2016.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.158

This article is cited by

Search

Quick links