Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

α-Actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of Snail expression and β-catenin stabilization in cervical cancer

Abstract

α-Actinin-4 (ACTN4) is frequently amplified and overexpressed in various cancers. Although ACTN4 functions in cancer cell migration and invasion, the roles of ACTN4 during the epithelial-to-mesenchymal transition (EMT) and cervical cancer tumorigenesis are unknown. In this study, we investigated the function of ACTN4 in the progression of cervical cancer and the mechanisms of EMT and tumorigenesis induced by ACTN4. We found that ACTN4 induced EMT by upregulating Snail, which was dependent on the Akt signaling pathway in cervical cancer. ACTN4 induced cell migration and invasion through Snail-mediated matrix metalloproteinase-9 expression. ACTN4 expression level was correlated with stabilization of β-catenin. Accumulatioin of β-catenin owing to ACTN4 induced tumorigenesis via upregulation of genes involved in cell proliferation, including cyclin D1 and c-myc. ACTN4 knockdown reduced cervical cancer cell proliferation and tumor formation in vivo. The expression level of ACTN4 is highly elevated in human cervical tumors, compared with that in normal cervical tissues. ACTN4-overexpressing MDCK cells induced tumor formation and metastatic nodules in nude mice. Our findings indicate that ACTN4 promotes EMT and tumorigenesis by regulating Snail expression and the Akt pathway in cervical cancer. We propose a novel mechanism for EMT and tumorigenesis in cervical cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Di Croce L, Pelicci PG . Tumour-associated hypermethylation: silencing E-cadherin expression enhances invasion and metastasis. Eur J Cancer 2003; 39: 413–414.

    Article  CAS  PubMed  Google Scholar 

  2. Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 2007; 67: 11254–11262.

    Article  CAS  PubMed  Google Scholar 

  3. Chausovsky A, Bershadsky AD, Borisy GG . Cadherin-mediated regulation of microtubule dynamics. Nat Cell Biol 2000; 2: 797–804.

    Article  CAS  PubMed  Google Scholar 

  4. Gumbiner BM . Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005; 6: 622–634.

    Article  CAS  PubMed  Google Scholar 

  5. Jawhari A, Jordan S, Poole S, Browne P, Pignatelli M, Farthing MJ . Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma: relationship with patient survival. Gastroenterology 1997; 112: 46–54.

    Article  CAS  PubMed  Google Scholar 

  6. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ . N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA . Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148: 779–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seidel B, Braeg S, Adler G, Wedlich D, Menke A . E- and N-cadherin differ with respect to their associated p120ctn isoforms and their ability to suppress invasive growth in pancreatic cancer cells. Oncogene 2004; 23: 5532–5542.

    Article  CAS  PubMed  Google Scholar 

  9. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  10. Medici D, Hay ED, Olsen BR . Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 2008; 19: 4875–4887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohkubo T, Ozawa M . The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 2004; 117: 1675–1685.

    Article  CAS  PubMed  Google Scholar 

  12. Jorda M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 2005; 118: 3371–3385.

    Article  CAS  PubMed  Google Scholar 

  13. Cadigan KM, Nusse R . Wnt signaling: a common theme in animal development. Genes Dev 1997; 11: 3286–3305.

    Article  CAS  PubMed  Google Scholar 

  14. Logan CY, Nusse R . The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  15. Ilyas M, Tomlinson IP . The interactions of APC, E-cadherin and beta-catenin in tumour development and progression. J Pathol 1997; 182: 128–137.

    Article  CAS  PubMed  Google Scholar 

  16. Polakis P . Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  17. Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF . Wnt-3 A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 2002; 277: 33398–33410.

    Article  CAS  PubMed  Google Scholar 

  18. Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J . Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 1997; 8: 1349–1358.

    CAS  PubMed  Google Scholar 

  19. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL 3rd et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997; 90: 181–192.

    Article  CAS  PubMed  Google Scholar 

  20. Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 2004; 23: 5853–5857.

    Article  CAS  PubMed  Google Scholar 

  21. Hamada F, Tomoyasu Y, Takatsu Y, Nakamura M, Nagai S, Suzuki A et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science 1999; 283: 1739–1742.

    Article  CAS  PubMed  Google Scholar 

  22. Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140: 1383–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Babakov VN, Petukhova OA, Turoverova LV, Kropacheva IV, Tentler DG, Bolshakova AV et al. RelA/NF-kappaB transcription factor associates with alpha-actinin-4. Exp Cell Res 2008; 314: 1030–1038.

    Article  CAS  PubMed  Google Scholar 

  24. Bolshakova A, Petukhova O, Turoverova L, Tentler D, Babakov V, Magnusson KE et al. Extra-cellular matrix proteins induce re-distribution of alpha-actinin-1 and alpha-actinin-4 in A431 cells. Cell Biol Int 2007; 31: 360–365.

    Article  CAS  PubMed  Google Scholar 

  25. Kumeta M, Yoshimura SH, Harata M, Takeyasu K . Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J Cell Sci 2010; 123: 1020–1030.

    Article  CAS  PubMed  Google Scholar 

  26. Shao H, Wang JH, Pollak MR, Wells A . alpha-actinin-4 is essential for maintaining the spreading, motility and contractility of fibroblasts. PLoS One 2010; 5: e13921.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Honda K, Yamada T, Hayashida Y, Idogawa M, Sato S, Hasegawa F et al. Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology 2005; 128: 51–62.

    Article  CAS  PubMed  Google Scholar 

  28. Aksenova V, Turoverova L, Khotin M, Magnusson KE, Tulchinsky E, Melino G et al. Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB. Oncotarget 2013; 4: 362–372.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chakraborty S, Reineke EL, Lam M, Li X, Liu Y, Gao C et al. Alpha-actinin 4 potentiates myocyte enhancer factor-2 transcription activity by antagonizing histone deacetylase 7. J Biol Chem 2006; 281: 35070–35080.

    Article  CAS  PubMed  Google Scholar 

  30. An HT, Kim J, Yoo S, Ko J . sLZIP negatively regulates skeletal muscle differentiation via interaction with alpha-actinin-4. J Biol Chem 2013; 289: 4969–4979.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ding Z, Liang J, Lu Y, Yu Q, Songyang Z, Lin SY et al. A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci USA 2006; 103: 15014–15019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayashida Y, Honda K, Idogawa M, Ino Y, Ono M, Tsuchida A et al. E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res 2005; 65: 8836–8845.

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto S, Tsuda H, Honda K, Onozato K, Takano M, Tamai S et al. Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Mod Pathol 2009; 22: 499–507.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  35. Nabeshima K, Inoue T, Shimao Y, Sameshima T . Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 2002; 52: 255–264.

    Article  CAS  PubMed  Google Scholar 

  36. Bjorklund M, Koivunen E . Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 2005; 1755: 37–69.

    PubMed  Google Scholar 

  37. Xu D, McKee CM, Cao Y, Ding Y, Kessler BM, Muschel RJ . Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1. Cancer Res 2010; 70: 6988–6998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Testa JR, Bellacosa A . AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98: 10983–10985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertelsen BI, Steine SJ, Sandvei R, Molven A, Laerum OD . Molecular analysis of the PI3K-AKT pathway in uterine cervical neoplasia: frequent PIK3CA amplification and AKT phosphorylation. Int J Cancer 2006; 118: 1877–1883.

    Article  CAS  PubMed  Google Scholar 

  40. Brognard J, Clark AS, Ni Y, Dennis PA . Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001; 61: 3986–3997.

    CAS  PubMed  Google Scholar 

  41. Nakayama H, Ikebe T, Beppu M, Shirasuna K . High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer 2001; 92: 3037–3044.

    Article  CAS  PubMed  Google Scholar 

  42. Prasad SB, Yadav SS, Das M, Govardhan HB, Pandey LK, Singh S et al. Down regulation of FOXO1 promotes cell proliferation in cervical cancer. J Cancer 2014; 5: 655–662.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schmidt-Ott KM, Masckauchan TN, Chen X, Hirsh BJ, Sarkar A, Yang J et al. Beta-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 2007; 134: 3177–3190.

    Article  CAS  PubMed  Google Scholar 

  44. Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 1997; 90: 707–716.

    Article  CAS  PubMed  Google Scholar 

  45. Eastman Q, Grosschedl R . Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 1999; 11: 233–240.

    Article  CAS  PubMed  Google Scholar 

  46. Barker N, Clevers H . Catenins, Wnt signaling and cancer. Bioessays 2000; 22: 961–965.

    Article  CAS  PubMed  Google Scholar 

  47. Kang H, Jang SW, Ko J . Human leucine zipper protein sLZIP induces migration and invasion of cervical cancer cells via expression of matrix metalloproteinase-9. J Biol Chem 2011; 286: 42072–42081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program (NRF-2014R1A2A2A01002826) and Tunneling Nanotube Research Center (NRF-2015R1A5A1009024) through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) and the Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, HT., Yoo, S. & Ko, J. α-Actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of Snail expression and β-catenin stabilization in cervical cancer. Oncogene 35, 5893–5904 (2016). https://doi.org/10.1038/onc.2016.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.117

This article is cited by

Search

Quick links